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COMPUTATION OF THE HIGHEST COEFFICIENTS

OF WEIGHTED EHRHART QUASI-POLYNOMIALS

OF RATIONAL POLYHEDRA

V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

Abstract. This article concerns the computational problem of count-
ing the lattice points inside convex polytopes, when each point must
be counted with a weight associated to it. We describe an efficient al-
gorithm for computing the highest degree coefficients of the weighted
Ehrhart quasi-polynomial for a rational simple polytope in varying di-
mension, when the weights of the lattice points are given by a polynomial
function h. Our technique is based on a refinement of an algorithm of
A. Barvinok in the unweighted case (i.e., h ≡ 1). In contrast to Barvi-
nok’s method, our method is local, obtains an approximation on the
level of generating functions, handles the general weighted case, and
provides the coefficients in closed form as step polynomials of the di-
lation. To demonstrate the practicality of our approach we report on
computational experiments which show even our simple implementation
can compete with state of the art software.

Contents

1. Introduction 2
2. Preliminaries 5
2.1. Rational convex polyhedra 5
2.2. Generating functions: Exponential sums and integrals 6
2.3. Brion’s theorem 7
2.4. Notations and basic facts in the case of a simplicial cone 7
3. Key ideas of the approximation theory 8
3.1. Weighted Ehrhart quasi-polynomials 8
3.2. Grading of the generating functions 10
3.3. Sketch of the method for lattice polytopes 11
3.4. Intermediate generating functions 12
4. Approximation of the generating function of a simplicial affine cone 13
4.1. Patching functions 14
4.2. Formula for intermediate sums 15
4.3. Approximation theorem 16
4.4. An explicit patching function 19
5. Computation of the patched generating function 20
6. Computation of Ehrhart quasi-polynomials 24
7. Experiments 30
Acknowledgments 32
References 32

Date: Nov 7, 2010 (Revision 242).
2010 Mathematics Subject Classification: 05A15 (Primary); 52C07, 68R05, 68U05,

52B20 (Secondary).

1

http://arxiv.org/abs/1011.1602v1


2 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

1. Introduction

Computations with lattice points in convex polyhedra arise in various
areas of computer science, mathematics, and statistics (see e.g., [13, 23, 32]
and the many references therein). Given p, a rational convex polytope in Rd,
and h(x), a polynomial function on Rd (often called a weight function), this
article considers the important computational problem of computing, or
estimating, the sum of the values of h(x) over the lattice points belonging
to p, namely

S(p, h) =
∑

x∈p∩Zd

h(x).

The function S(p, h) has already been studied extensively in the unweighted
case, i.e., when h(x) takes only the constant value 1 (in that case of course
S(p, 1) is just the number of lattice points of p). Many papers and books
have been written about the structure of that function (see, e.g., [11, 13]
and the many references therein). Nevertheless, in many applications h(x)
can be a much more complicated function. Important examples of such a
situation appear, for instance, in enumerative combinatorics [1], statistics
[27, 22], symbolic integration [2] and non-linear optimization [24]. Still, only
a small number of algorithmic results exist about the case of an arbitrary
polynomial h.

It is well-known that when the polyhedron p is dilated by an integer
factor n ∈ N, we obtain a function of n, the so-called weighted Ehrhart
quasi-polynomial of the pair (p, h), namely

S(np, h) =
∑

x∈np∩Zd

h(x) =

d+M
∑

m=0

Em(n mod q)nm.

This is a quasi-polynomial in the sense that the function is a sum of mono-
mials up to degree d+M , where M = degh, but whose coefficients Em are
periodic functions of n. The coefficient functions Em are periodic functions
with period q, where q ∈ N is the smallest positive integer such that qp
is a lattice polytope, i.e., its vertices are lattice points. We will make this
more precise later (we recommend [11, 13] for excellent introductions to this
topic).

To begin realizing the richness of S(np, h), note that its leading highest
degree coefficient Ed+M (which actually does not depend on n) is precisely
equal to

∫

p
h(x) dx, i.e., the integral of h over the polytope p, when h is

homogeneous of degree M . These integrals were studied in [6], [7] and more
recently at [2]. Still most other coefficients are difficult to understand, even
for easy polytopes, such as simplices (see [21] for a survey of results and
challenges). The key aim of this article is to achieve the fast computation
of the first few top-degree (weighted) coefficients Em via an approximation
of S(np, h) by a quasi-polynomial that shares the highest coefficients with
S(np, h).
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We now explain the known results achieved so far in the literature. It
is important to stress that computing all the coefficients Em for m =
0, . . . , d+M is an NP-hard problem, thus the best one can hope for theoret-
ical results is to obtain an approximation, as we propose to do here. Until
now most results dealt only with the unweighted case, i.e., h(x) = 1 and
we summarize them here: A. Barvinok first obtained for lattice polytopes p
a polynomial-time algorithm that for a fixed integer k0 can compute the
highest k0 coefficients Em (see [8]). For this he used Morelli’s identities [33]
and relied on an oracle that computes the volumes of faces.

Later, in [10], Barvinok obtained a formula relating the k highest degree
coefficients of the (unweighted) Ehrhart quasi-polynomial of a rational poly-
tope to volumes of sections of the polytope by certain affine lattice subspaces
of codimension < k. As a consequence, he proved that the k highest degree
coefficients of the unweighted Ehrhart quasi-polynomial of a rational simplex
can be computed by a polynomial algorithm, when the dimension d is part
of the input, but k is fixed. More precisely, given a dilation class n mod q
with n ∈ N, Barvinok’s algorithm computes the numbers Em(n mod q) by
an interpolation technique. However, neither a closed formula for these
Em, depending on n, nor a generating function for the coefficients became
available from [10]. In fact, in that article [10, Section 8.2] the question of
efficiently computing such a closed form expression was raised.

A key point of both Barvinok’s and our method is the following. The sum
S(p, h) has natural generalizations, the intermediate sums SL(p, h), where
L ⊆ V = Rd is a rational vector subspace. For a polytope p ⊂ V and a
polynomial h(x)

SL(p, h) =
∑

x

∫

p∩(x+L)
h(y) dy,

where the summation index x runs over the projected lattice in V/L. In
other words, the polytope p is sliced along lattice affine subspaces parallel
to L and the integrals of h over the slices are added up. For L = V , there
is only one term and SV (p, h) is just the integral of h(x) over p, while, for
L = {0}, we recover S(p, h). Barvinok’s method in [10] was to introduce
particular linear combinations of the intermediate sums,

∑

L∈L

λ(L)SL(p, h).

It is natural to replace the polynomial weight h(x) with an exponential

function x 7→ e〈ξ,x〉, and consider the corresponding holomorphic functions
of ξ in the dual V ∗. Moreover, one can allow p to be unbounded, then the
sums

SL(p)(ξ) =
∑

x

∫

p∩(x+L)
e〈ξ,y〉 dy

still make sense as meromorphic functions on V ∗. The map p 7→ SL(p)(ξ) is
a valuation.
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In [14], it was proved that a version of Barvinok’s construction on the level
of generating functions, namely

∑

L∈L λ(L)SL(p)(ξ), approximates S(p)(ξ)
in a certain ring of meromorphic functions (a precise statement is given
below). The proof in [14] relied on the Euler-Maclaurin expansion of these
functions. Another proof, using the Poisson summation formula, will appear
in [15].

In the present article, we introduce a simplified way to approximate
S(p)(ξ) for the case of a simplicial affine cone p = s + c, which levels the
way for a practical and efficient implementation. Via Brion’s theorem, it
is sufficient to sum up these local contributions of the tangent cones of the
vertices. We present a method for computing the highest degree coefficients
of the Ehrhart quasi-polynomial of a rational simple polytope, by applying
the approximation theorem to each of the cones at vertices of p. The com-
plexity depends on the number of vertices of the polytope, and thus if the
simple polytope is presented by its vertices (rather than by linear inequali-
ties), we obtain a polynomial-time algorithm. In particular, the algorithm
is polynomial-time for the case of a simplex. We obtain the Ehrhart co-
efficient functions Em(n mod q) in a closed form as step polynomials, i.e.,
polynomials in n whose coefficients are modular expressions (ζin) mod qi
with integers ζi and qi, for example (2n) mod 3. Having a closed formula
available considerably strengthens Barvinok’s result in [10] even in the un-
weighted case h = 1.

The structure of this paper is as follows. In Section 2, we first present
some necessary preliminaries. Section 3 explains the intermediate generat-
ing function SL(p)(ξ) in more detail. Then we show how to use a grading
of S(p)(ξ) to extract the highest degree coefficients of the weighted Ehrhart
polynomial in the case of a lattice polytope. This motivates the approxima-
tion results for generating functions. In Section 4, we give a simple proof of
the approximation theorem of [14], in the case of a simplicial cone (see The-
orem 24). The theorem uses the notion of a patching function (essentially
a form of Möbius inversion formulas described in Subsection 4.1). We ex-
hibit an explicit and easily computable such patching function. Using these
tools, we show in Section 5 that the approximation for a cone s+ c (on the
level of generating functions) can be computed efficiently as a closed for-
mula. The formula makes the periodic dependence on the vertex s explicit.
Finally, in Section 6, we give the polynomial-time algorithm to compute
the coefficients Em(n mod q) as step polynomials. Our main result (Theo-
rem 37) says that, for every fixed number k0, there exists a polynomial-time
algorithm that, given a simple polytope p of arbitrary dimension, a lin-
ear form ℓ ∈ V ∗, a nonnegative integer M , computes the highest k0 + 1
coefficients EM+d−k0 , . . . , EM+d of the weighted Ehrhart quasi-polynomial
S(np, h = ℓM ) in the form of step polynomials.

Four comments are in order about the applicability and potential practi-
cality of the main results: First, although the weight h used in Theorem 37
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is a power of a linear form, as is carefully explained in [2], one can obtain
similar complexity of computation for polynomials that depend on a fixed
number of variables, or with fixed degree (Corollary 44). Second, it is also
worth noting that using perturbations (see e.g., [28]), triangulations [26] or
simplicial cone decompositions of polyhedra (see, e.g., [30]), one can extend
computations from simple polytopes to arbitrary polytopes. Third, since
our approximation is done at the level of generating functions, it extends
the complexity result from [10] to the weighted case. Finally, at the end of
the article we report on experiments using a simple implementation of the
algorithm in Maple, demonstrating it is competitive with more sophisticated
software tools. This indicates a potential to use this algorithm for experi-
mentally verifying conjectures on the positivity of the Ehrhart coefficients of
certain polytopes, for examples where the computation of the full Ehrhart
polynomials is out of reach. The algorithms presented here require a rich
mixture of computational geometry and algebraic-symbolic computation.

2. Preliminaries

2.1. Rational convex polyhedra. We consider a rational vector space V
of dimension d, that is to say a finite dimensional real vector space with
a lattice denoted by Λ. We will need to consider subspaces and quotient
spaces of V , this is why we cannot simply let V = Rd and Λ = Zd. A point
v ∈ V is called rational if there exists a non-zero integer q such that qv ∈ Λ.
The set of rational points in V is denoted by VQ. A subspace L of V is called
rational if L ∩ Λ is a lattice in L. If L is a rational subspace, the image of
Λ in V/L is a lattice in V/L, so that V/L is a rational vector space. The
image of Λ in V/L is called the projected lattice. A rational space V , with
lattice Λ, has a canonical Lebesgue measure dx = dmΛ(x), for which V/Λ
has measure 1.

A convex rational polyhedron p in V (we will simply say polyhedron) is, by
definition, the intersection of a finite number of closed half spaces bounded
by rational affine hyperplanes. We say that p is full-dimensional (in V ) if
the affine span of p is V .

In this article, a cone is a polyhedral cone (with vertex 0) and an affine
cone is a translated set s + c of a cone c. A cone c is called simplicial if
it is generated by independent elements of V . A simplicial cone c is called
unimodular if it is generated by independent integral vectors v1, . . . , vk such
that {v1, . . . , vk} can be completed to an integral basis of V . An affine cone a
is called simplicial (respectively, simplicial unimodular) if the associated
cone is. A polytope p is a compact polyhedron. The set of vertices of p is
denoted by V(p). For each vertex s, the cone of feasible directions at s is
denoted by cs. For details in all these notions see, e.g., [11].
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2.2. Generating functions: Exponential sums and integrals.

Definition 1. We denote by H(V ∗) the ring of holomorphic functions de-
fined around 0 ∈ V ∗. We denote by M(V ∗) the ring of meromorphic func-
tions defined around 0 ∈ V ∗ and by Mℓ(V

∗) ⊂ M(V ∗) the subring consist-
ing of meromorphic functions φ(ξ) which can be written as a quotient of a
holomorphic function and a product of linear forms.

This paper relies on the study of important examples of functions in
Mℓ(V

∗), the following continuous and discrete generating functions I(p,Λ)
and S(p,Λ) associated to a convex polyhedron p. Both have an important
additivity property which makes them valuations (see [11, Chapter 8] or the
survey [12] for a detailed presentation, here we summarize the essentials).

Definition 2. Let M be a vector space. A valuation F is a map from the set
of polyhedra p ⊂ V to the vector space M such that whenever the indicator
functions [pi] of a family of polyhedra pi satisfy a linear relation

∑

i ri [pi] =
0, then the elements F (pi) satisfy the same relation

∑

i riF (pi) = 0.

Proposition 3. There exists a unique valuation I(·,Λ) which associates to
every polyhedron p ⊂ V a meromorphic function I(p,Λ) ∈ Mℓ(V

∗), so that
the following properties hold:

(i) If the polyhedron p is not full-dimensional or if p contains a straight
line, then I(p,Λ) = 0.

(ii) If ξ ∈ V ∗ is such that e〈ξ,x〉 is integrable over p, then

I(p,Λ)(ξ) =

∫

p

e〈ξ,x〉 dmΛ(x).

(iii) For every point s ∈ VQ, one has

I(s+ p,Λ)(ξ) = e〈ξ,s〉I(p,Λ)(ξ).

We will call I(p,Λ)(ξ) the continuous generating function of p.

Proposition 4. There exists a unique valuation S(·,Λ) which associates to
every polyhedron p ⊂ V a meromorphic function S(p,Λ) ∈ Mℓ(V

∗), so that
the following properties hold:

(i) If p contains a straight line, then S(p,Λ) = 0.

(ii) If ξ ∈ V ∗ is such that e〈ξ,x〉 is summable over the set of lattice points
of p, then

S(p,Λ)(ξ) =
∑

x∈ p∩Λ

e〈ξ,x〉.

(iii) For every point s ∈ Λ, one has

S(s+ p,Λ)(ξ) = e〈ξ,s〉S(p,Λ)(ξ).

S(p,Λ)(ξ) is called the (discrete) generating function of p.
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2.3. Brion’s theorem. A consequence of the valuation property is the fol-
lowing fundamental theorem. It follows from the Brion-Lawrence-Varchenko
decomposition of a polyhedron into the supporting cones at its vertices
[18, 11]; see also [19], Proposition 3.1, for a more general Brianchon-Gram
type identity.

Theorem 5. Let p be a polyhedron with set of vertices V(p). For each
vertex s, let cs be the cone of feasible directions at s. Then

S(p,Λ) =
∑

s∈V(p)

S(s+ cs,Λ).

2.4. Notations and basic facts in the case of a simplicial cone. For all
of the notions below see [11]. Let vi ∈ Λ, i = 1, . . . , d be linearly independent

integral vectors and let c =
∑d

i=1 R+vi be the cone they span.

Definition 6. The fundamental parallelepiped b of the cone (with respect
to the generators vi, i = 1, . . . , d) is the set

b =

d
∑

i=1

[0, 1[ vi.

Note that the set has a half-open boundary. We immediately have:

Lemma 7. Let s ∈ V . Then

I(s+ c,Λ)(ξ) = e〈ξ,s〉
(−1)d volΛ(b)
∏d

i=1 〈ξ, vi〉
, (1)

where volΛ(b) is the volume of the fundamental parallelepiped with respect
to the Lebesgue measure dmΛ defined by the lattice.

If V = Rd and Λ = Zd, then volΛ(b) = |det(v1, . . . , vd)|, and so

I(s+ c,Zd)(ξ) = e〈ξ,s〉
(−1)d|det(v1, . . . , vd)|

∏d
i=1 〈ξ, vi〉

. (2)

We also recall the following elementary but crucial lemma.

Lemma 8. (i) The affine cone (s + c) ∩ Λ is the disjoint union of the

translated parallelepipeds s+ b+ v, for v ∈
∑d

j=1Nvj.

(ii) The set of lattice points in the affine cone s+ c is the disjoint union of

the sets x+
∑d

i=1 Nvi when x runs over the set (s+ b) ∩ Λ.
(iii) The number of lattice points in the parallelepiped s + b is equal to the

volume of the parallelepiped with respect to the Lebesgue measure dmΛ

defined by the lattice, that is

Card((s+ b) ∩ Λ) = volΛ(b).

In particular, when V = Rd and Λ = Zd, then

Card((s + b) ∩ Zd) = |det(v1, . . . , vd)|.
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The study of the generating function S(s+ c,Λ)(ξ) of the affine cone s+ c

will be a crucial tool. It relies on expressing S(s + c,Λ)(ξ) in terms of the

generating function S(s + b,Λ)(ξ) =
∑

x∈(s+b)∩Λ e〈ξ,x〉 of the fundamental

parallelepiped. Lemma 8 (ii) immediately gives:

Lemma 9.

S(s + c,Λ)(ξ) = S(s+ b,Λ)(ξ)
1

∏d
j=1(1− e〈ξ,vj〉)

. (3)

Example 10. Consider the case where V = R and Λ = Z. Let c = R+. Let s ∈ R,
then the “fractional part” {s} ∈ [0, 1[ is defined as the unique real number such
that s− {s} ∈ Z. Then the unique integer s̄ in s+ b is s+ {−s}, and so equations
(1) and (3) give

I(s+ c,Z)(ξ) = eξs
−1

ξ
and S(s+ c,Z)(ξ) = eξ(s+{−s}) 1

1− eξ
.

3. Key ideas of the approximation theory

3.1. Weighted Ehrhart quasi-polynomials. Let p ⊂ V be a rational
polytope and let h(x) be a polynomial function of degree M on V . We
consider the following weighted sum over the set of lattice points of p,

∑

x∈p∩Λ

h(x).

When p is dilated by a non-negative integer n ∈ N, we obtain the weighted
Ehrhart quasi-polynomial of the pair (p, h).

Definition 11. Let q be the smallest positive integer such that qp is a lattice
polytope. The we define the Ehrhart quasi-polynomial E(p, h;n) and its
coefficients Em(p, h;n mod q) by

E(p, h;n) =
∑

x∈np∩Λ

h(x) =

d+M
∑

m=0

Em(p, h;n mod q)nm.

We note that the coefficients Em depend on n, but they actually depend
only on n mod q, where q is the smallest positive integer such that qp is a
lattice polytope. If h(x) is homogeneous of degree M , the highest degree
coefficient Ed+M is equal to the integral

∫

p
h(x) dx (see [2] and references

therein).

We concentrate on the special case where the polynomial h(x) is a power
of a linear form

h(x) =
〈ξ, x〉M

M !
.

This is not a restriction because any polynomial can be written as a linear
combination of powers of linear forms. In fact, as discussed in [2], whenever
the polynomial h(x) is either of fixed degree or only depends on a fixed
number of variables (possibly after a linear change of variables), then only a
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n = 6

Figure 1. The example triangle t and its dilation 6t

polynomial number of powers of linear forms are needed, and such a decom-
position can be computed in polynomial time. We introduce the following
notation.

Definition 12. Let q be as above. We define the Ehrhart quasi-polynomial
E(p, ξ,M ;n) and the coefficients Em(p, ξ,M ;n mod q) for m = 0, . . . ,M+d
by

E(p, ξ,M ;n) =
∑

x∈np∩Λ

〈ξ, x〉M

M !
=

M+d
∑

m=0

Em(p, ξ,M ;n mod q)nm.

It will be convenient in this paper to introduce the following notations.
For a positive integer q ∈ N and a real number n ∈ R, we write

⌊n⌋q := q
⌊

1
qn

⌋

∈ qZ, {n}q := (n mod q) ∈ [0, q),

which give the unique decomposition

n = ⌊n⌋q + {n}q.

By ⌊n⌋ := ⌊n⌋1 and {n} := {n}1 we obtain the ordinary “floor” and “frac-
tional part” notations. Finally, ⌈n⌉ := −⌊−n⌋ is the “ceiling” notation.

Example 13. Consider the rational triangle t with vertices (0, 0), ( 5
28 , 0), and

( 5
28 ,

5
14 ) as shown in Figure 1. Let us compute E(t, ξ,M ;n) for this small example.

Note that the integer q such that qt is a lattice polytope is q = 28.
In what follows consider powers of the linear form ξ = x + y as weights for the

lattice points. When the power M = 0, then we obtain a constant weight and the
quasi-polynomial E(t, ξ, 0;n) counts the lattice points inside the various dilations
of t: it is given by the following formula:

25

784
n2 +

(

−
5

392
{5n}28 +

5

14

)

n+

(

1 +
1

784
({5n}28)

2 −
1

14
{5n}28

)

.

Indeed, when n = 1 (no dilation) there is only one lattice point and the formula
above reduces to

1089

784
−

33

392
{5}28 +

1

784
({5}28)

2
=

1089

784
−

33

392
5 +

1

784
25 = 1.
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When we dilate the same triangle six times, i.e., n = 6, we obtain four lattice
points.

841

196
−

29

196
{30}28 +

1

784
({30}28)

2 =
841

196
−

29

196
· 2 +

1

784
· 4 = 4.

Next let us take M = 1, in that case the lattice point (a, b) is counted with weight
a + b. In this case the top coefficient is equal to the integral of the linear form
ξ = x + y over t. The quasi-polynomial E(t, ξ, 1;n) is given by the following
formula:

125

16464
n3+

(

−
25

5488
{5n}28 +

75

784

)

n2+

(

5

5488
({5n}28)

2 −
15

392
{5n}28 +

25

84

)

n

+

(

−
1

16464
({5n}28)

3
+

3

784
({5n}28)

2 −
5

84
{5n}28

)

.

Substitute again n = 1 in the expression, to obtain

275

686
−

1685

16464
{5}28 +

13

2744
({5}28)

2 −
1

16464
({5}28)

3
= 0.

Note that since only the lattice point (0, 0) lies within the triangle at n = 1, the
quasipolynomial must evaluate to zero.

In practice, it is impossible to compute E(p, ξ,M ;n) except when p is of
small dimension (and M relatively small). Thus we restrict our ambitions:

Let us fix a number k0. Our goal will be to compute the k0 + 1 highest
degree coefficients Em(p, ξ,M ;n mod q), for m = M + d, . . . ,M + d − k0.
We will be able to give a polynomial time algorithm to do so.

3.2. Grading of the generating functions. A key property that we will
make use of in this article is the following grading of Mℓ: A function φ(ξ) ∈
Mℓ(V

∗) has a unique expansion into homogeneous rational functions

φ(ξ) =
∑

m≥m0

φ[m](ξ),

where the summands φ[m](ξ) have degree m as we define now: If P is a
homogeneous polynomial on V ∗ of degree p, and D a product of r linear
forms, then P

D is an element in Mℓ(V
∗) homogeneous of degree m = p− r.

For instance, ξ1
ξ2

is homogeneous of degree 0. On this example we observe
that a function in Mℓ(V

∗) which has non-negative degree terms need not
be analytic.

In particular, consider the generating function S(s+ c,Λ)(ξ) for a simpli-
cial cone c. By Lemma 9,

S(s + c,Λ)(ξ) = S(s+ b,Λ)(ξ)
1

∏d
j=1(1− e〈ξ,vj〉)

.

Thus, S(s + c,Λ) ∈ Mℓ(V
∗), and so it admits a decomposition into homo-

geneous components:
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Lemma 14.

S(s+ c,Λ)(ξ) = S(s+ c,Λ)[−d](ξ) + S(s+ c,Λ)[−d+1](ξ) + · · · , (4)

and the lowest degree term S(s + c,Λ)[−d](ξ) is equal to I(c,Λ)(ξ), i.e., the
integral over the unshifted cone c.

Proof. We write

d
∏

j=1

1

1− e〈ξ,vj〉
=

d
∏

j=1

〈ξ, vj〉

1− e〈ξ,vj〉
1

∏d
j=1 〈ξ, vj〉

. (5)

The function x
1−ex is holomorphic with value −1 for x = 0. Thus we have

S(s+c,Λ) ∈ Mℓ(V
∗). The value at ξ = 0 of the sum over the parallelepiped

is the number of lattice points of the parallelepiped, that is volΛ(b). This
proves the last assertion. �

3.3. Sketch of the method for lattice polytopes. We will now explain
the key point of our method, with the simplifying assumption that the ver-
tices of the polytope are lattice points. We will show that the highest degree
coefficients of the weighted Ehrhart polynomial can be read out from an ap-
proximation of the generating functions of the cones at vertices. In Section 4
we will study this approximation, and in Section 5 we will show how to effi-
ciently compute it. Then, in Section 6, we will come back to the computation
of Ehrhart coefficients for the general case of rational polytopes.

Proposition 15. Let p be a lattice polytope. Then, for k ≥ 0, we have

EM+d−k(p, ξ,M) =
∑

s∈V(p)

〈ξ, s〉M+d−k

(M + d− k)!
S(cs)[−d+k](ξ). (6)

The highest degree coefficient is just the integral

EM+d(p, ξ,M) =

∫

p

〈ξ, x〉M

M !
dx.

Remark 16. As functions of ξ, the coefficients Em(p, ξ,M) are polynomial,
homogeneous of degree M . However, in (6), they are expressed as linear
combinations of rational functions of ξ, whose poles cancel out.

Proof of Proposition 15. The starting point is Brion’s formula. As the ver-
tices are lattice points, we have

∑

x∈ p∩Λ

e〈ξ,x〉 =
∑

s∈V(p)

S(s+ cs)(ξ) =
∑

s∈V(p)

e〈ξ,s〉S(cs)(ξ). (7)

When p is replaced with np, the vertex s is replaced with ns but the cone
cs does not change. We obtain

∑

x∈np∩Λ

e〈ξ,x〉 =
∑

s∈V(p)

en〈ξ,s〉S(cs)(ξ).
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We replace ξ with tξ,
∑

x∈np∩Λ

et〈ξ,x〉 =
∑

s∈V(p)

ent〈ξ,s〉S(cs)(tξ).

The decomposition into homogeneous components gives

S(cs)(tξ) = t−dI(cs)(ξ) + t−d+1S(cs)[−d+1](ξ) + · · ·+ tkS(cs)[k](ξ) + · · · .

Hence, the tM -term in the right-hand side of the above equation is equal to

M+d
∑

k=0

(nt)M+d−k t−d+k 〈ξ, s〉M+d−k

(M + d− k)!
S(cs)[−d+k](ξ).

Thus we have

∑

x∈np∩Λ

〈ξ, x〉M

M !
=

∑

s∈V(p)

nM+d 〈ξ, s〉
M+d

(M + d)!
I(cs)(ξ)

+ nM+d−1 〈ξ, s〉M+d−1

(M + d− 1)!
S(cs)[−d+1](ξ) + · · ·+ S(cs)[M ](ξ). (8)

From this relation, we read immediately that
∑

x∈np∩Λ
〈ξ,x〉M

M ! is a polynomial

function of n of degree M + d, and that the coefficient of nM+d−k is given
by (6). The highest degree coefficient is given by

EM+d(p, ξ,M) =
∑

s∈V(p)

〈ξ, s〉M+d

(M + d)!
I(cs)(ξ).

Applying Brion’s formula for the integral, this is equal to the term of ξ-

degree M in I(p)(ξ), which is indeed the integral
∫

p

〈ξ,x〉M

M ! dx. �

From Proposition 15, we draw an important consequence: in order to
compute the k0 + 1 highest degree terms of the weighted Ehrhart polyno-

mial for the weight h(x) = 〈ξ,x〉M

M ! , we only need the k0 + 1 lowest degree
homogeneous terms of the meromorphic function S(cs)(ξ), for every vertex
s of p. We compute such an approximation in Section 4; it turns out to be
sufficient also in the general case of a rational polytope.

3.4. Intermediate generating functions. To obtain the approximation,
we study generating functions which interpolate between the integral I(p,Λ)
and the discrete sum S(p,Λ). This trend of ideas was first discussed by
Barvinok in [10]. Let L be a rational subspace of V . To any polyhedron p we
associate a meromorphic function SL(p,Λ)(ξ) ∈ M(V ∗), which is, roughly
speaking, obtained by slicing p along affine subpaces parallel to L through
lattice points, and adding the integrals of e〈ξ,x〉 along the slices. Recall that
the quotient space V/L is endowed with the projected lattice ΛV/L.
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Proposition 17. Let L ⊆ V be a rational subspace. There exists a unique
valuation SL(·,Λ) which to every rational polyhedron p ⊂ V associates a
meromorphic function with rational coefficients SL(p,Λ) ∈ M(V ∗) so that
the following properties hold:

(i) If p contains a line, then SL(p,Λ) = 0.
(ii)

SL(p,Λ)(ξ) =
∑

x∈ΛV/L

∫

p∩(x+L)
e〈ξ,y〉 dy, (9)

for every ξ ∈ V ∗ such that the above sum converges.
(iii) For every point s ∈ Λ, we have

SL(s+ p,Λ)(ξ) = e〈ξ,s〉SL(p,Λ)(ξ).

We call the function SL(p,Λ) an intermediate generating function. The
proof is entirely analogous to the case L = {0}, see Theorem 3.1 in [12], and
we omit it.

For L = {0}, we recover the valuation S. For L = V , we have SV (p,Λ) =
I(p,Λ). In particular, if p is not full-dimensional, then SV (p,Λ) = 0.

If p is compact, the meromorphic function SL(p,Λ)(ξ) is actually regular
at ξ = 0, and its value for ξ = 0 is the Q-valued valuation EL⊥(p) considered
by Barvinok [10].

Remark 18. The function SL(p,Λ) is actually an element of Mℓ(V
∗), just

like the functions S(p,Λ) and I(p,Λ). This follows from an interesting de-
composition that allows to write SL as a combination of terms using S and I
for certain cones. This and other properties of the valuation SL(·,Λ) will be
discussed in a forthcoming article [4].

4. Approximation of the generating function of a simplicial

affine cone

Let c ⊂ V be a simplicial cone with integral generators vj , j = 1, . . . , d,
and let s ∈ VQ. Let k0 ≤ d. In this section we will obtain an expression for
the k0 + 1 lowest degree homogeneous terms of the meromorphic function
S(s + c)(ξ). Recall that if c is unimodular, the function S(s + c)(ξ) has a
“short” expression

S(s+ c)(ξ) = e〈ξ,s̄〉
d
∏

j=1

1

1− e〈ξ,vj〉
,

where vi, i = 1, . . . , d are the primitive integral generators of the edges and
s̄ is the unique lattice point in the corresponding parallelepiped s+ b. This
is a particular case of Lemma 8.

When c is not unimodular, it is not possible to compute efficiently the
first k0 terms of the Laurent expansion of the function S(s + c)(ξ), if k0
is part of the input as well as the dimension d. In contrast, if k0 is fixed,
we are going to obtain an expression for the terms of degree ≤ −d + k0
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which only involves a discrete summation over cones in dimension ≤ k0 and
determinants. For example, the lowest degree term is |det(vj)|

∏

j
−1

〈ξ,vj〉
.

4.1. Patching functions. For constructing the approximation, we will use
a patching function. For I ⊆ {1, . . . , d}, we denote by LI the linear span of
the vectors vi, i ∈ I and by L⊥

I ⊆ V ∗ the orthogonal subspace. We denote
by Ic the complement of I in {1, . . . , d}.

Definition 19. We denote by J d
≥d0

the set of subsets I ⊆ {1, . . . , d} of

cardinality |I| ≥ d0. A function I 7→ λ(I) on J d
≥d0

is called a patching
function if it satisfies the following condition.

[

⋃

I∈J d
≥d0

L⊥
I

]

=
∑

I∈J d
≥d0

λ(I)
[

L⊥
I

]

. (10)

Remark 20. The family of subspaces LI , |I| ≥ d0 is closed under sum, and
the family of orthogonals L⊥

I is closed under intersection. The value λ(I)

plays the same as role as the Möbius function µ(L) for L⊥
I that Barvinok

[10, section 7] computes algorithmically for a certain family of subspaces L
by walking the poset. From this discussion, it follows that patching func-
tions do exist. The precise relation between Barvinok’s construction and the
construction of the present paper will be studied in the forthcoming paper [5].

We will compute a canonical patching function below, in Proposition 27.
Let us state some interesting properties.

Lemma 21. Let I 7→ λ(I) be a function on J d
≥d0

. The following conditions
are equivalent.

(i) λ is a patching function.
(ii)

∑

I∈J d
≥d0

,I⊆I0
λ(I) = 1 for every I0 ∈ J d

≥d0
.

(iii) For 1 ≤ i ≤ d, let Fi(z) ∈ C[[z]] be a formal power series (in one
variable) with constant term equal to 1. Then

∏

1≤i≤d

Fi(zi) ≡
∑

I∈J d
≥d0

λ(I)
∏

i∈Ic

Fi(zi)

mod terms of z-degree ≥ d− d0 + 1. (11)

(iv) Let zIc =
∑

i∈Ic zi. Then

ez1+···+zd ≡
∑

I∈J d
≥d0

λ(I)ezIc mod terms of z-degree ≥ d − d0 + 1. (12)

Proof. Let I0 ∈ J d
≥d0

. Then there exists ξ ∈ L⊥
I0

such that ξ ∈ L⊥
I if and

only if L⊥
I0

⊆ L⊥
I , i.e., if and only if I ⊆ I0. Thus (i) ⇔ (ii).

Let us prove that (ii) ⇒ (iii). We write Fi(zi) = 1 + zigi(zi). We have
∏

1≤i≤d

(1 + zigi(zi)) =
∑

K⊆{1,...,d}

∏

i∈K

zigi(zi). (13)
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Consider a monomial zk11 · · · zkdd of total degree k1 + · · · + kd ≤ d − d0. Let
us denote its coefficient in the product

∏

i∈K zigi(zi) by αK . Let K0 be
the set of indices such that ki 6= 0. Then |K0| ≤ d − d0. Moreover in
the right hand side of (13), our monomial appears only in the terms where

K ⊆ K0. Therefore the coefficient of zk11 · · · zkdd in
∏

1≤i≤d Fi(zi) is equal to
∑

K⊆K0
αK . Furthermore, the coefficient of zk11 · · · zkdd in the right-hand-side

of (11) is equal to
∑

I∈J d
≥d0

λ(I)
∑

K⊆K0∩Ic

αK =
∑

K⊆K0

αK

∑

I∈J d
≥d0

K⊆Ic

λ(I).

By condition (ii) we have
∑

I∈J d
≥d0

K⊆Ic

λ(I) = 1 for every K ⊆ K0.

Thus we have proved that (ii) ⇒ (iii). Next, (iv) is a particular case of (iii),
so it remains only to prove that (iv) implies (ii).

By expanding the exponentials in condition (iv), we obtain

(z1 + · · ·+ zd)
d−d0 =

∑

I∈J d
≥d0

λ(I)
(

∑

i∈Ic

zi

)d−d0
.

Condition (ii) follows easily from this relation. �

4.2. Formula for intermediate sums. In preparation for the approxima-
tion theorem, we need some notations and an expression for intermediate
sums SL(s+ c,Λ)(ξ).

We have V = LI ⊕ LIc . For x ∈ V we denote the components by

x = xI + xIc.

Thus we identify the quotient V/LI with LIc and we denote the projected
lattice by ΛIc ⊂ LIc . Note that LIc ∩ Λ ⊆ ΛIc , but the inclusion is strict in
general.

Example 22. Let v1 = (1, 0), v2 = (1, 2), I = {2}. The projected lattice ΛIc

on LIc = Rv1 is Z v1
2 . See Figure 2.

We denote by cI the cone generated by the vectors vj , for j ∈ I and
by bI the parallelepiped bI =

∑

i∈I [0, 1[ vi. Similarly we denote by cIc the
cone generated by the vectors vj, for j ∈ Ic and bIc =

∑

i∈Ic [0, 1[ vi. The
projection of the cone c on V/LI = LIc identifies with cIc . Note that the
generators vi, i ∈ Ic, may be non-primitive for the projected lattice ΛIc ,
even if it is primitive for Λ, as we see in the previous example. We write
s = sI + sIc .

We first show that the intermediate generating function SLI (s + c,Λ)
decomposes as a product.
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v2

v1

Figure 2. The projected lattice Λ{1}

The function S(sIc + cIc ,ΛIc)(ξ) is a meromorphic function on the space
(LIc)

∗. The integral I(sI + cI , LI ∩ Λ)(ξ) is a meromorphic function on the
space (LI)

∗. We consider both as functions on V ∗ through the decomposition
V = LI ⊕ LIc .

Proposition 23. The intermediate sum for the full cone s + c breaks up
into the product

SLI (s+ c,Λ)(ξ) = S(sIc + cIc ,ΛIc)(ξ) I(sI + cI , LI ∩ Λ)(ξ). (14)

Proof. The projection of the cone s+c into LIc is the cone sIc+cIc. For each
xIc ∈ (sIc + cIc)∩ΛIc , the slice (s+ c)∩ (xIc +LI) is the cone xIc + sI + cI .
Let us compute the integral on the slice.

∫

(s+c)∩(xIc+LI)
e〈ξ,y〉 dmLI∩Λ(y). (15)

We write y = xIc + sI +
∑

j∈I yjvj . Then

dmLI∩Λ(y) = volLI∩Λ(bI)
∏

j∈I

dyj.

Hence (15) is equal to

e〈ξ,xIc〉e〈ξ,sI〉 volLI∩Λ(bI)(−1)|I|
∏

j∈I

1

〈ξ, vj〉
.

We observe that only the first factor, e〈ξ,xIc〉, depends on xIc . The sum of
these factors over all xIc ∈ (sIc + cIc) ∩ ΛIc gives S(sIc + cIc ,ΛIc)(ξ), and
using formula (1) for the integral, we obtain (14). �

4.3. Approximation theorem. We can now state and prove the approx-
imation theorem.

Theorem 24 (Approximation by a patched generating function). Let c ⊂ V
be a rational simplicial cone with edge generators v1, . . . , vd. Let s ∈ VQ. Let
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I 7→ λ(I) be a patching function on J d
≥d0

. For I ∈ J d
≥d0

let LI be the linear

span of {vi}i∈I . Then we have

S(s+ c,Λ)(ξ) ≡ Aλ(s + c,Λ)(ξ) :=
∑

I∈J d
≥d0

λ(I)SLI (s+ c,Λ)(ξ)

mod terms of ξ-degree ≥ −d0 + 1. (16)

We call the function Aλ(s + c,Λ)(ξ) on the right-hand side of (16) the
patched generating function of s+ c (with respect to λ).

Proof of Theorem 24. We write the vertex as s =
∑

i sivi. Let a =
∑

i aivi ∈
V . We apply (11) to the functions

Fi(zi) = e(ai−si)zi
−zi

1− ezi
,

and we substitute zi = 〈ξ, vi〉. We obtain

e〈ξ,a−s〉
d
∏

i=1

−〈ξ, vi〉

1− e〈ξ,vi〉
≡

∑

I∈J d
≥d0

λ(I)e〈ξ,aIc−sIc〉
∏

i∈Ic

−〈ξ, vi〉

1− e〈ξ,vi〉

mod terms of ξ-degree ≥ d− d0 + 1.

We multiply both sides first by e〈ξ,s〉; because this is analytic in ξ and thus
of non-negative ξ-degree, the identity modulo terms of high ξ-degree still

holds true. Then we multiply by 1/
∏d

i=1(−〈ξ, vi〉), which is homogeneous
of degree −d in ξ. We obtain

e〈ξ,a〉
d
∏

i=1

1

1− e〈ξ,vi〉
≡

∑

I∈J d
≥d0

λ(I)e〈ξ,aIc 〉
∏

i∈Ic

1

1− e〈ξ,vi〉
e〈ξ,sI〉

∏

i∈I

−1

〈ξ, vi〉

mod terms of ξ-degree ≥ −d0 + 1. (17)

Now, we sum up equalities (17) when a runs over the set (s + b) ∩ Λ of
integral points in the fundamental parallelepiped s + b of the affine cone
s+ c. On the left-hand side we obtain

∑

a∈(s+b)∩Λ

e〈ξ,a〉
d
∏

i=1

1

1− e〈ξ,vi〉
.

By Lemma 9, this is precisely S(s + c,Λ)(ξ). On the right-hand side, for
each I, we have a sum over a ∈ (s+ b) ∩ Λ of the function

e〈ξ,aIc 〉
∏

i∈Ic

1

1− e〈ξ,vi〉
e〈ξ,sI〉

∏

i∈I

−1

〈ξ, vi〉
,

which depends only on the projection aIc of a in the decomposition a =
aI + aIc ∈ LI ⊕ LIc. When a runs over (s + b) ∩ Λ, its projection aIc runs
over (sIc + bIc) ∩ ΛIc . Let us show that the fibers have the same number
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of points, equal to volLI∩Λ(bI). For a given aIc ∈ (sIc + bIc) ∩ ΛIc , let us
compute the fiber

{ y ∈ (s+ b) ∩ Λ : yIc = aIc }.

Fix a point aI + aIc in this fiber. Then y = aIc + yI lies in the fiber if and
only if yI − aI ∈ (sI − aI + bI) ∩ Λ. By Lemma 8(ii), the cardinality of the
fiber is equal to volLI∩Λ(bI). Thus we obtain

S(s+ c)(ξ) ≡
∑

I∈J d
≥d0

λ(I)S(sIc + bIc)(ξ)
∏

i∈Ic

1

1− e〈ξ,vi〉
e〈ξ,sI〉 volLI∩Λ(bI)

∏

i∈I

−1

〈ξ, vi〉

mod terms of ξ-degree ≥ −d0 + 1. (18)

By Proposition 23 and Lemmas 7 and 9, the term corresponding to an
I ∈ J d

≥d0
in the right-hand side of (18) is precisely

SLI (s+ c,Λ)(ξ) = S(sIc + cIc ,ΛIc)(ξ) I(sI + cI , LI ∩ Λ)(ξ),

which completes the proof. �

Remark 25. For d0 = 0, we obtain the poset J d
≥0 of all subsets of {1, . . . , d}.

The unique patching function on J d
≥0 is given by λ(∅) = 1 and λ(I) = 0

for all I 6= ∅. Then the approximation is trivial, i.e., S(s + c,Λ)(ξ) =
Aλ(s+ c,Λ)(ξ).

Example 26. Let c be the standard cone in R2, and d0 = 1. Thus J 2
≥1 consists

of three subsets, {1}, {2} and {1, 2}. A patching function is given by λ({i}) = 1
and λ({1, 2}) = −1. We consider the affine cone s + c with s = (− 1

2 ,−
1
2 ). Let

ξ = (ξ1, ξ2). We have

I(si + c{i})(ξ) =
−e−ξi/2

ξi
, I(s+ c)(ξ) =

e−ξ1/2−ξ2/2

ξ1ξ2
,

S(si + c{i})(ξ) =
1

1− eξi
, S(s+ c)(ξ) =

1

(1− eξ1)(1 − eξ2)
.

The approximation theorem claims that

1

(1− eξ1)(1− eξ2)
≡

1

1− eξ2
·
−e−ξ1/2

ξ1
+

1

1− eξ1
·
−e−ξ2/2

ξ2
−

e−ξ1/2−ξ2/2

ξ1ξ2
mod terms of ξ-degree ≥ 0.

Indeed, the difference between the two sides is equal to

( 1

1− eξ1
+

e−ξ1/2

ξ1

)( 1

1− eξ2
+

e−ξ2/2

ξ2

)

which is analytic near 0.
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4.4. An explicit patching function. Next we compute an explicit patch-
ing function on J d

≥d0
. It is related to the Möbius function of the poset J d

≥d0
,

so we call it the Möbius patching function and denote it by λMöbius. We
will denote the corresponding patched generating function AλMöbius(s+ c,Λ)
by A≥d0(s+ c,Λ).

Proposition 27. For I ∈ J d
≥d0

, let

λMöbius(I) = (−1)|I|−d0

(

|I| − 1

d0 − 1

)

.

Then λMöbius is a patching function on J d
≥d0

.

Proof. We prove that λMöbius satisfies Condition (iv) of Lemma 21. The
trick is to write ez = 1 + t(ez − 1)|t=1. Thus

ez1+···+zd =

d
∏

1

ezi =

d
∏

i=1

(

1 + t(ezi − 1)
)

∣

∣

∣

t=1

Let us consider P (t) :=
∏d

i=1

(

1+t(ezi −1)
)

=
∑d

q=0Cq(z)t
q as a polynomial

in the indeterminate t. As ezi − 1 is a sum of terms of zi-degree > 0, we
have

ez1+···+zd ≡
k0
∑

q=0

Cq(z) mod terms of z-degree ≥ k0 + 1. (19)

Next, we write

P (t) =

d
∏

1

(

1 + t(ezi − 1)
)

=

d
∏

1

(

(1− t) + tezi
)

.

By expanding the product, we obtain

Cq(z) =
∑

|K|≤q

(−1)q−|K|

(

d− |K|

q − |K|

)

ezK .

Summing up these coefficients for 0 ≤ q ≤ k0 = d− d0, we obtain

k0
∑

q=0

Cq(z) =
∑

|K|≤k0





k0
∑

q=|K|

(−1)q−|K|

(

d− |K|

q − |K|

)



 ezK .

By substituting K = Ic and d− q = m, we obtain

k0
∑

q=0

Cq(z) =
∑

|I|≥d0

f(|I|)ezIc ,

with

f(j) =

j
∑

m=d0

(−1)j−m

(

j

j −m

)

=

j
∑

m=d0

(−1)j−m

(

j

m

)

.
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The truncated binomial sum f(j) is easy to compute, using the recursion

relation
( j
m

)

=
( j−1
m−1

)

+
(j−1

m

)

. We obtain

f(j) = (−1)j−d0

(

j − 1

d0 − 1

)

.

Thus, λMöbius(I) = f(|I|) satisfies Condition (ii) for a patching function. �

Remark 28. Proposition 27 can also be deduced from results in [16].

5. Computation of the patched generating function

In this section, we show that if k0 = d − d0 is fixed, the patched gen-
erating function A≥d0(s + c,Λ) can be efficiently computed for a simplicial
cone s + c. This will be a consequence of Barvinok’s polynomial-time de-
composition of cones in fixed dimension [9, 11]. We exhibit the dependence
of the patched generating function on the vertex s explicitly as a “step func-
tion” in two useful ways, using the “ceiling” function ⌈·⌉ and the “fractional
part” function {·}, respectively.

We will write the patched generating function using the following analytic
function.

Definition 29. Let

T (τ, x) = eτx
x

1− ex
= −

∞
∑

n=0

Bn(τ)
xn

n!
, (20)

where Bn(τ) are the Bernoulli polynomials.

We start with the following result.

Theorem 30 (Short formula for SLI (s + c,Zd)(ξ) for varying s). Fix a
non-negative integer k0. There exists a polynomial time algorithm for the
following problem. Given the following input:

(I1) a number d in unary encoding,
(I2) a simplicial cone c = c(v1, . . . , vd) ⊂ Rd, represented by the primitive

vectors v1, . . . , vd ∈ Zd in binary encoding,
(I3) a subspace LI = lin(vi : i ∈ I) ⊆ Rd of codimension k0, represented

by an index set I ⊆ {1, . . . , d} of cardinality d0 = d− k0,

compute the following output in binary encoding:

(O1) a finite set Γ,

(O2) for every γ in Γ, integers α(γ), rational vectors η
(γ)
i and w

(γ)
i for

i = 1, . . . , d, where η
(γ)
i ∈ Zd for i ∈ Ic
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such that for every s ∈ Qd, we have the following equality of meromorphic
functions of ξ:

SLI (s+ c,Zd)(ξ)

=
∑

γ∈Γ

α(γ)
∏

i∈Ic

T
(⌈〈

η
(γ)
i , s

〉⌉

,
〈

ξ, w
(γ)
i

〉)

·
∏

i∈I

exp
(〈

η
(γ)
i , s

〉〈

ξ, w
(γ)
i

〉)

·
1

∏d
i=1

〈

ξ, w
(γ)
i

〉

(21a)

= e〈ξ,s〉
∑

γ∈Γ

α(γ)
∏

i∈Ic

T
({

−
〈

η
(γ)
i , s

〉}

,
〈

ξ, w
(γ)
i

〉)

·
1

∏d
i=1

〈

ξ, w
(γ)
i

〉

. (21b)

Of course, for I = ∅ we have L = {0}, and so we recover formulas for
S(s+ c,Zd)(ξ). If we set I = {1, . . . , d}, then L = Rd, and we get formulas
for I(s+ c,Zd)(ξ).

Remark 31. Consider the term corresponding to γ ∈ Γ in (21a) or (21b).

As it will follow from the proof, the vector w
(γ)
i for i ∈ I is just the original

vector vi, and the collection w
(γ)
i , i = 1, . . . , d, forms a basis of Rd. Fur-

thermore the vectors w
(γ)
i , with i ∈ Ic, are in LIc and form a basis of the

projected lattice. The vectors η
(γ)
i , i = 1, . . . , d, are the dual (biorthogonal)

vectors to the elements w
(γ)
j , j = 1, . . . , d, i.e.,

〈

η
(γ)
i , w

(γ)
j

〉

= δi,j . Thus we

only need to compute the integers α(γ) and the elements w
(γ)
i where i ∈ Ic.

Remark 32. Consider the term corresponding to γ ∈ Γ in (21b). As the

vectors w
(γ)
i , i ∈ Ic, form a basis of the projected lattice, we may identify

V/(LI +Λ) to
⊕

i∈Ic [0, 1[w
(γ)
i . Define

s(γ) =
∑

i∈Ic

{

−
〈

η
(γ)
i , s

〉}

w
(γ)
i .

As the η
(γ)
i for i ∈ Ic are integer vectors, and

〈

η
(γ)
i , vj

〉

= 0 if j ∈ I,

we can think of s 7→ s(γ) as a linear map on the torus V/(Λ + LI) with

integer coefficients. The point s + s(γ) is in
⊕

i∈Ic Zw
(γ)
i ⊕

⊕

i∈I Rvi, and
formula (21b) reads also

SLI (s+ c,Zd)(ξ) =
∑

γ∈Γ

α(γ)e〈ξ,s+s(γ)〉 1
∏

i∈Ic
(

1− e〈ξ,w
(γ)
i 〉

)

1
∏

i∈I〈ξ, vi〉
. (22)

Now we prove the theorem.

Proof of Theorem 30. Let us describe the algorithm along the proof. Let
Λ = Zd. By Proposition 23,

SLI (s+ c,Λ)(ξ) = S(sIc + cIc ,ΛIc)(ξ) I(sI + cI , LI ∩ Λ)(ξ). (23)
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We first discuss I(sI + cI , LI ∩ Λ). We have

I(sI + cI , LI ∩ Λ)(ξ) = e〈ξ,sI〉 volLI∩Λ(bI)
∏

j∈I

−1

〈ξ, vj〉
. (24)

Using linear functionals ηi ∈ Qd, i ∈ I (the coordinate functions with re-
spect to the basis vi), write sI =

∑

i∈I〈ηi, s〉vi. The ηi can be read off in
polynomial time from the inverse of the matrix whose columns are v1, . . . , vd.
Then e〈ξ,sI〉 takes the form

e〈ξ,sI〉 =
∏

i∈I

exp(〈ηi, s〉〈ξ, vi〉). (25)

Now, to handle the factor S(sIc + cIc ,ΛIc), note that cIc ⊂ LIc is a k0-
dimensional cone. By using a Hermite normal form computation, which is
polynomial time [29], we can compute a linear change of variables which
replaces the projected lattice ΛIc on LIc by Zk0 . Then, using Barvinok’s
decomposition [9], we decompose it into a family of cones which are uni-
modular,

[

cIc
]

≡
∑

m∈M

ǫm
[

c
(m)
Ic

]

(modulo cones containing lines), (26)

where ǫm ∈ {±1}. As k0 is fixed, this decomposition can be done by a
polynomial time algorithm. This step is of course crucial with respect to
the efficiency of the whole algorithm.

Changing again notations, we now denote by c = c({wi}i∈Ic) one of these
unimodular cones c

(m)
Ic ⊂ LIc, with primitive generators wi, and also write

ǫ = ǫm. We remark that the vectors wi, i ∈ Ic, generate the projected lattice
on LIc . Using linear functionals ηi ∈ Qd, i ∈ Ic, write sIc =

∑

i∈Ic〈ηi, s〉wi.

Actually, we have ηi ∈ Zd. By letting wi = vi for the other indices i ∈ I, we
can write

s =
∑

i∈I

〈ηi, s〉vi +
∑

i∈Ic

〈ηi, s〉wi =
d

∑

i=1

〈ηi, s〉wi. (27)

Let s′Ic be the unique lattice point in the fundamental parallelepiped of
the cone sIc + c. We have

s′Ic =
∑

i∈Ic

⌈〈ηi, s〉⌉wi. (28)

Using this, we obtain the generating function from Lemma 9 as

S(sIc + c)(ξ) =
e〈ξ,s

′
Ic〉

∏

i∈Ic(1− e〈ξ,wi〉)
.

Thus finally, using (24) we have the meromorphic function

ǫ volLI∩Λ(bI)(−1)|I| ·
e〈ξ,s

′
Ic〉

∏

i∈Ic(1− e〈ξ,wi〉)
·

e〈ξ,sI〉
∏

j∈I 〈ξ, vj〉
. (29)
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Then (29) is now written

α
∏

i∈Ic

T (⌈〈ηi, s〉⌉, 〈ξ, wi〉) ·
∏

i∈I

exp(〈ηi, s〉〈ξ, vi〉) ·
1

∏d
i=1〈ξ, wi〉

, (30)

where α collects the multiplicative constants in (29). Collecting these terms
gives the desired short formula (21a).

To derive the second form, we note ⌈〈ηi, s〉⌉ = 〈ηi, s〉 + {−〈ηi, s〉}, so we
can write

T (⌈〈ηi, s〉⌉, 〈ξ, wi〉) = T ({−〈ηi, s〉}, 〈ξ, wi〉) exp(〈ηi, s〉〈ξ, wi〉). (31)

Thus the term (30) can be written as

α
∏

i∈Ic

T ({−〈ηi, s〉}, 〈ξ, wi〉) · e
〈ξ,s〉 ·

1
∏d

i=1〈ξ, wi〉
, (32)

using (27). Collecting these terms gives the short formula (21b). �

Example 33. Let us give an example of the output of our algorithm, in a small
example. Consider the 3-dimensional cone with rays given by the vectors (1, 1, 1),
(1,−1, 0), (1, 1, 0). This cone is not unimodular. We consider the affine cone
s+c. Our algorithm described in Theorem 30 computes any intermediate generating
function SL(s+c,Z3) when L is a linear span of a face of c. For L = {0} (indexed by
the empty set I), we obtain the meromorphic function S(s+ c,Z3)(ξ) (the discrete
generating function of the cone s+c). Here S(s+c,Z3)(ξ) depends of s = (s1, s2, s3)
and ξ = (ξ1, ξ2, ξ3) and is given by:

exp (s1ξ1 + s2ξ2 + s3ξ3)
(

−
T ({−s3 + s2} ,−ξ1 − ξ2)T ({−s1 + s2} , ξ1)T ({−s3} , ξ1 + ξ2 + ξ3)

(−ξ1 − ξ2) ξ1 (ξ1 + ξ2 + ξ3)

+
T ({−s3 + s2} , ξ1 − ξ2)T ({2 s3 − s2 − s1} , ξ1)T ({−s3} , ξ1 + ξ2 + ξ3)

(ξ1 − ξ2) ξ1 (ξ1 + ξ2 + ξ3)

)

.

If L = Rv1 is the subspace of dimension 1 generated by the edge v1 = (1, 1, 1) of
the cone c (so that L is indexed by the subset I = {1} of {1, 2, 3}), the intermediate
generating function SL(s+ c,Z3) is given by:

exp (s1ξ1 + s2ξ2 + s3ξ3)

(

−
T ({−s3 + s2} ,−ξ1 − ξ2)T ({−s1 + s2} , ξ1)

(−ξ1 − ξ2) ξ1 (−ξ1 − ξ2 − ξ3)

+
T ({−s3 + s2} , ξ1 − ξ2)T ({2 s3 − s2 − s1} , ξ1)

(ξ1 − ξ2) ξ1 (−ξ1 − ξ2 − ξ3)

)

.

Remark 34. When k0 = d − d0 is fixed, the set J d
≥d0

has a polynomially
bounded cardinality, and it can be enumerated by a straightforward algorithm
along with the evaluation of the patching function λMöbius. Thus we can also
compute A≥d0(s + c,Λ)(ξ) in the same form (21a) or (21b) in polynomial
time.
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6. Computation of Ehrhart quasi-polynomials

We now apply the approximation of the generating functions of the cones
at vertices to the computation of the highest coefficients for a weighted
Ehrhart quasi-polynomial. We first discuss the case when the weight is a
power of a linear form.

Theorem 35. Let p be a simple polytope and let V(p) denote the set of its
vertices. For each vertex s ∈ V(p), let cs be the tangent cone of s, and let
qs ∈ N be a positive integer such that qs s ∈ Λ. Fix a linear form ℓ ∈ V ∗

and M a nonnegative integer. Fix 0 ≤ k0 ≤ d and let d0 = max{d − k0, 0}.
Then the Ehrhart quasi-polynomial

E(p, ℓ,M ;n) =
∑

x∈np∩Λ

〈ℓ, x〉M

M !

coincides in degree ≥ M + d− k0 with the following quasi-polynomial

k0
∑

k=0

∑

s∈V(p)

(⌊n⌋qs)
M+d−k 〈ξ, s〉M+d−k

(M + d− k)!
A≥d0

(

{n}qss+ cs,Λ
)

[−d+k]
(ξ), (33a)

evaluated at ξ = ℓ, which can also be written as

k0
∑

k=0

nM+d−k
∑

s∈V(p)

〈ξ, s〉M+d−k

(M + d− k)!

(

e−〈ξ,{n}qss〉A≥d0

(

{n}qss+ cs,Λ
)

(ξ)
)

[−d+k]
,

(33b)
evaluated at ξ = ℓ.

In the following, we will use the second form (33b).

Remark 36. The sum (33) depends polynomially on ℓ. However, for an
individual vertex s, the functions

ξ 7→
〈ξ, s〉M+d−k

(M + d− k)!
A≥d0

(

{n}qss+ cs,Λ
)

[−d+k]
(ξ)

and

ξ 7→
〈ξ, s〉M+d−k

(M + d− k)!

(

e−〈ξ,{n}qs s〉A≥d0

(

{n}qss+ cs,Λ
)

(ξ)
)

[−d+k]

are meromorphic functions, which are not defined if ξ is singular. Thus in
the algorithm we use a deformation procedure.

Proof of Theorem 35. The sum
∑

x∈np∩Λ
〈ξ,x〉M

M ! is the term of ξ-degree M
in

S(np)(ξ) =
∑

s∈V(p)

S(ns+ cs)(ξ).

Fix a vertex s. We write n = ⌊n⌋qs + {n}qs . As ⌊n⌋qss is a lattice point, we
have

S(ns+ cs)(ξ) = e⌊n⌋qs 〈ξ,s〉S({n}qss+ cs)(ξ). (34)
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Consider S(ns+ cs)[M ](ξ) as a quasi-polynomial in n. By (34), it coincides
in degree ≥ M + d− k0 with

k0
∑

k=0

(⌊n⌋qs)
M+d−k 〈ξ, s〉M+d−k

(M + d− k)!
S({n}qss+ cs)[−d+k](ξ).

Now, for 0 ≤ k ≤ k0, we have

S({n}qss+ cs)[−d+k](ξ) = A≥d0({n}qss+ cs)[−d+k](ξ).

By specializing on ξ = ℓ, we obtain the claim in the form of equation (33a).

To obtain the second claim in the form of (33b), we write

S(ns+ cs)(ξ) = en〈ξ,s〉
(

e−〈ξ,s〉{n}qsS({n}qss+ cs)(ξ)
)

. (35)

Again, by expanding we obtain that the quasi-polynomial S(ns + cs)[M ](ξ)
coincides in degree ≥ M + d− k0 with

k0
∑

k=0

nM+d−k 〈ξ, s〉M+d−k

(M + d− k)!

(

e−〈ξ,s〉{n}qsS({n}qss+ cs)(ξ)
)

[−d+k]
.

Since e−〈ξ,s〉{n}qs is analytic in ξ, we have for 0 ≤ k ≤ k0 that
(

e−〈ξ,s〉{n}qsS({n}qss+ cs)(ξ)
)

[−d+k]

=
(

e−〈ξ,s〉{n}qsA≥d0({n}qss+ cs)(ξ)
)

[−d+k]
. (36)

Again, by specializing on ξ = ℓ, we obtain the claim in the form of
equation (33b). �

We now derive the coefficients of the weighted Ehrhart polynomial as
short closed formulas that are “step polynomials” (cf. [34]). These can then
be evaluated efficiently, providing a corollary (Theorem 42) in the same form
as Barvinok’s theorem in [10].

Theorem 37. For every fixed number k0 ∈ N, there exists a polynomial-time
algorithm for the following problem.
Input:

(I1) a number d ∈ N in unary encoding, with d ≥ k0,
(I2) a finite index set V,
(I3) a simple polytope p, given by its vertices, rational vectors sj ∈ Qd for

j ∈ V in binary encoding,
(I4) a rational vector ℓ ∈ Qd in binary encoding,
(I5) a number M ∈ N in unary encoding.

Output, in binary encoding,

(O1) an index set Γ,
(O2) polynomials fγ,m ∈ Q[r1, . . . , rk0 ] and integer numbers ζγ,mi ∈ Z,

qγ,mi ∈ N for γ ∈ Γ and m = M+d−k0, . . . ,M+d and i = 1, . . . , k0,
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such that the Ehrhart quasi-polynomial

E(p, ℓ,M ;n) =
∑

x∈np∩Λ

〈ℓ, x〉M

M !
=

M+d
∑

m=0

Em(p, ℓ,M ; {n}q)n
m

agrees in n-degree ≥ M + d− k0 with the quasi-polynomial

∑

γ∈Γ

M+d
∑

m=M+d−k0

fγ,m
(

{ζγ,m1 n}qγ,m1
, . . . , {ζγ,mk0

n}qγ,mk0

)

nm.

Remark 38. For d ≤ k0, the algorithm actually computes the complete
Ehrhart quasi-polynomial, i.e., the coefficient functions Em(p, ℓ,M ; {n}q)
for m = 0, . . . ,M+d. The key point of our method, however, is to handle the
case where d > k0; then the non-trivial efficiently computable approximations
come into play.

Remark 39. The specific form of the quasi-polynomial given by the theorem
gives a more precise period qi for the individual terms, rather than a period
qs that is determined by the vertex. The qi will always be divisors of qs. Due
to the projections into lattices in small dimension ≤ k0, these periods can be
much smaller than qs. In particular, the highest-degree coefficient EM+d of
course is a constant.

We will use the following lemma.

Lemma 40 (Lemma 4 of [2]). For every fixed number D ∈ N, there exists
a polynomial time algorithm for the following problem.
Input: a number M in unary encoding, a sequence of k polynomials Pj ∈
Q[X1, . . . ,XD] of total degree at most M , in dense monomial representation.
Output: the product P1 · · ·Pk truncated at degree M .

We can now prove the theorem.

Proof of Theorem 37. Because the polytope p is simple, we can use the
primal–dual algorithm by Bremner, Fukuda, and Marzetta [17, Corollary 1],
to compute the inequality description (H-description) from the given V-
description in polynomial time. From the double description, we can com-
pute in polynomial time the description of the tangent cones csj for j ∈ V by
the primitive vectors vsj ,1, . . . , vsj ,d ∈ Zd such that csj = c(vsj ,1, . . . , vsj ,d).

We now use formula (33b) of Theorem 35, which gives (with d0 = d− k0)

Em(p, ξ,M ; {n}q)

=
∑

s∈V(p)

〈ξ, s〉m

m!

(

e−〈ξ,{n}qss〉A≥d0

(

{n}qss+ cs,Λ
)

(ξ)
)

[−d+k]
(37)

form = M+d−k, whenm ≥ M+d−k0. We compute this separately for each
k = 0, . . . , k0, that is, m = M +d−k0, . . . ,M +d. Let s+ cs be one of these
cones. By the algorithm of Theorem 30 and Remark 34, we compute the data
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describing the parametric short formula (21b) for A≥d0

(

{n}qss + cs,Λ
)

(ξ).
We then consider one of the summands of

〈ξ, s〉m

m!

(

e−〈ξ,{n}qs s〉A≥d0

(

{n}qss+ cs,Λ
)

(ξ)
)

[−d+k]

at a time. Here e−〈ξ,{n}qss〉 and the term e〈ξ,{n}qss〉 from (21b) cancel, and
thus each summand takes the form

( 〈ξ, s〉M+d−k

(M + d− k)!

)(

∏

i∈Ic

T
(

τi(n),
〈

ξ, wi

〉)

)

[k]

( 1
∏d

i=1

〈

ξ, wi

〉

)

(38)

where

τi(n) :=
{

−
〈

ηi, s
〉

{n}qs
}

for i ∈ Ic. (39)

Let qi ∈ N be the smallest positive integer such that qi〈−ηi, s〉 ∈ Z. Then qi
is a divisor of the number qs associated with the vertex s, because ηi ∈ Zd.
Then

τi(n) =
1
qi

{

ζi{n}qs
}

qi
with ζi = qi〈−ηi, s〉 ∈ Z.

Since qi is a divisor of qs, this simplifies to

τi(n) =
1
qi

{

ζin
}

qi
, (40)

where of course ζi can be reduced modulo qi as well because n is assumed
to be an integer. We now treat ri := {ζin}qi ∈ N as symbolic variables.

In order to evaluate (38) at ξ = ℓ, we note the following. The first factor
is holomorphic in ξ and homogeneous of ξ-degree m = M + d − k, the
second factor is holomorphic in ξ and homogeneous of degree k, and the
third factor is homogeneous of ξ-degree −d. If 〈ℓ, wi〉 = 0 for some i, we
cannot just substitute ξ = ℓ in the formula. Instead we use a perturbation.
In polynomial time, we can compute a rational vector ℓ′ ∈ Qd such that
〈ℓ′, wi〉 6= 0 for all vectors wi with 〈ℓ, wi〉 = 0. It is important that we
choose the same vector once and for all computations with all cones and
summands.

We then set ξ = t(ℓ+ǫℓ′), where t and ǫ are treated as symbolic variables.
Here the exponent of the variable t keeps track of the ξ-grading. We then do
computations with truncated series in Q[ri : i ∈ Ic][t±1, ǫ±1]. We note that
this is a polynomial ring in a constant number of variables only, because |Ic|
is bounded above by the constant k0. Thus Lemma 40 gives us a polynomial-
time algorithm for multiplying the series. Then (38) can be written as:

〈ℓ+ ǫℓ′, s〉m

m!
·
(

∏

i∈Ic

T
(

τi(n),
〈

t(ℓ+ ǫℓ′), wi

〉)

)

[k]
·

1
∏d

i=1

〈

ℓ+ ǫℓ′, wi

〉 · tM−k,

(41)
where the subscript [k] now means to take the term of t-degree k. In the
end we are interested in the coefficient of the term tM ǫ0.

Expanding the factors of (41) gives the following contributions, all of
which can be written down in polynomial time. First of all, the rational
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terms 〈ℓ + ǫℓ′, wi〉
−1 give the following contribution. If 〈ℓ, wi〉 = 0, we

simply get
1

〈ℓ+ ǫℓ′, wi〉
=

1

〈ℓ′, wi〉
ǫ−1. (42)

If 〈ℓ, wi〉 6= 0, we get the geometric series in ǫ

1

〈ℓ+ ǫℓ′, wi〉
=

1

〈ℓ, wi〉

∞
∑

u=0

(

−
〈ℓ′, wi〉

〈ℓ, wi〉

)u

ǫu.

The first and second terms in (41) are holomorphic, thus the only negative
degrees in ǫ come from the rational terms (42). Let U be the number of
vectors wi that are orthogonal to ℓ; then ǫ−U is the lowest negative degree.
Note that U ≤ d. Since we wish to find the term of ǫ-degree 0, we can
truncate all series after ǫ-degree U :

1

〈ℓ+ ǫℓ′, wi〉
=

1

〈ℓ, wi〉

U
∑

u=0

(

−
〈ℓ′, wi〉

〈ℓ, wi〉

)u

ǫu + oǫ(ǫ
U ). (43)

We expand the first factor of (41) as follows.

〈ℓ+ ǫℓ′, s〉m

m!
=

min{m,U}
∑

u=0

(

m

u

)

〈ℓ, s〉m−u〈ℓ′, s〉uǫu + oǫ(ǫ
U ). (44)

Now we consider the holomorphic terms

T (τi(n), 〈t(ℓ+ ǫℓ′), wi〉)

= −
∞
∑

j=0

1

j!
Bj(τi)

〈

t(ℓ+ ǫℓ′), wi

〉j

= −
k0
∑

j=0

1

j!
Bj

(

1
qi
ri
)





min{j,U}
∑

u=0

(

j

u

)

〈ℓ, wi〉
j−u〈ℓ′, wi〉

uǫu



 tj

+ ot(t
k0) + oǫ(ǫ

U ). (45)

The Bernoulli polynomials Bj(τi) of degree j ≤ k0 that appear in this for-
mula can be efficiently expanded in polynomial time using recursion formu-
las. We remark that the variables ri appear with a degree that is at most
that of t. Using Lemma 40, we multiply the truncated series (45) for i ∈ Ic

in Q[ri : i ∈ Ic][t][ǫ], truncating in each step after tk0 and ǫU . We thus
obtain the second factor of (41),

(

∏

i∈Ic

T
(

τi(n),
〈

t(ℓ+ ǫℓ′), wi

〉)

)

[k]
for all k = 0, . . . , k0, (46)

as a truncated series in Q[ri : i ∈ Ic][ǫ].
Then we multiply the truncated series (42), (43), (46), and (44) in poly-

nomial time, truncating in each step after ǫU , using Lemma 40. In the end,
we read out the coefficient of ǫ0 as a polynomial in Q[ri : i ∈ Ic]. Then we
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substitute for ri. Collecting these terms gives the formula for the Ehrhart
coefficient Em(p, ξ,M ; {n}q). �

Example 41. Let us give a small example of the output of our algorithm for
Em(p, ℓ,M, {n}q), when p is the simplex in R5 with vertices:

(0, 0, 0, 0, 0), (12 , 0, 0, 0, 0), (0,
1
2 , 0, 0, 0), (0, 0,

1
2 , 0, 0), (0, 0, 0,

1
6 , 0), (0, 0, 0, 0,

1
6 ).

We consider the linear form ℓ on R5 given by the scalar product with (1, 1, 1, 1, 1).
If M = 0, the coefficients of Em(p, ℓ,M = 0; {n}q) are just the coefficients of the

unweighted Ehrhart quasi-polynomial S(np, 1). We obtain

S(np, 1) =
1

34560
n5 +

( 5

3456
−

1

6912
{n}2

)

n4

+
( 139

5184
−

5

864
{n}2 +

1

3456
({n}2)

2
)

n3 + · · · .

Now if M = 1, all integral points (x1, x2, x3, x4, x5) are weighted with the function
h(x) = x1 + x2 + x3 + x4 + x5, and we obtain

S(np, h) =
11

1244160
n6 +

( 19

41472
−

11

207360
{n}2

)

n5

+
( 553

62208
−

95

41472
{n}2 +

11

82944
({n}2)

2
)

n4 + · · · .

We can remark that although q = 6 is the smallest integer such that qp is a
lattice polytope, only periodic functions of n mod 2 enter in the top three Ehrhart
coefficients. This is indeed conform to the known periodicity properties of the
Ehrhart coefficients.

As a corollary, simply by evaluating the step polynomials, we obtain the
following result, which directly extends the complexity result from Barvi-
nok’s paper to the weighted case.

Theorem 42 (Evaluation of the Ehrhart coefficients for a given dilation
class {n}q). For every fixed number k0 ∈ N, there exists a polynomial-time
algorithm for the following problem.
Input:

(I1) a number d ∈ N in unary encoding, with d ≥ k0,
(I2) a finite index set V,
(I3) a simple polytope p, given by its vertices, rational vectors sj ∈ Qd for

j ∈ V in binary encoding,
(I4) a rational vector ℓ ∈ Qd in binary encoding,
(I5) a number M ∈ N in unary encoding,
(I6) a number n in binary encoding,

Output, in binary encoding,

(O1) a positive integer q ∈ N such that qp is a lattice polytope and
(O2) the numbers Em(p, ℓ,M ; {n}q) for m = M + d− k0, . . . ,M + d.

Remark 43. A direct algorithm for computing Em(p, ℓ,M ; {n}q) for just
one dilation class {n}q could of course use the values ri = {ζin}qi ∈ Z rather
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than symbolic variables ri and would therefore only need to do calculations
with truncated series in the two-variable ring Q[t±1, ǫ±1].

Via the decomposition of polynomials into powers of linear forms, which
is, as discussed in [2], polynomial-time under suitable hypotheses, we obtain
the following corollary.

Corollary 44. For every fixed number k0 ∈ N, there exist polynomial-time
algorithms for the following problems.
Input:

(I1) a number d ∈ N in unary encoding, with d ≥ k0,
(I2) a simple rational polytope p ⊂ Rd, given by its vertices in binary

encoding,
(I3) a number M in unary encoding,
(I4) a polynomial h of degree ≤ M which is given either as

(a) a power of a linear form, or
(b) a sparse polynomial where each monomial only depends on a fixed

number of variables, or
(c) a sparse polynomial of fixed total degree,

(I5) a number n in binary encoding,

Output, in binary encoding,

(O1) a positive integer q ∈ N such that qp is a lattice polytope and
(O2) the numbers Em(p, h; {n}q) for m = M + d− k0, . . . ,M + d.

7. Experiments

We implemented the algorithms in Maple, for the unweighted case and
assuming that the input were lattice simplices of full dimension (in this case
the quasi-polynomial becomes a polynomial). This assumption was made
for simplicity of output in the calculation and because available software to
verify the results (e.g., LattE macchiato [31]) cannot compute with weights.
In addition, already the problem of computing Ehrhart polynomials for lat-
tice simplices has received attention by many researchers and it is non-trivial
(see e.g., the references in [21]). After checking simple low-dimensional ex-
amples by hand, we set up automatic scripts for generating random tests.
The simplices generated had vertex coordinates drawn uniformly at random
from {−99, . . . , 99}. We timed the speed of the procedure to compute the
top three Ehrhart coefficients in 50 random simplices per dimension and
recorded the average time of computation. We compared with the compu-
tation of the full Ehrhart polynomials using the state-of-the-art algorithms
implemented in LattE macchiato [31]; see Table 1.

In the table, Dual refers to an implementation of Barvinok’s decomposi-
tion of the duals of the tangent cones into unimodular cones, as implemented
first in LattE [25], and which is still the default method in LattE macchiato.1

Primal refers to a primal variant of Barvinok’s decomposition described

1The LattE macchiato command is count --ehrhart-polynomial.
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Table 1. Computation times for Ehrhart polynomials of
random lattice simplices

Average runtime (CPU seconds)

Full (LattE macchiato)

Dimension Dual Primal Primal1000

Top 3
(new code)

3 0.16 0.10 0.04 1.12

4 28.00 4.68 0.28 4.31

5 317.5 5.8 13.4

6 198.0 37.4

7 103

8 294

9 393

10 1179

11 1681

in [30]; it is more efficient for these examples because the determinants of
the dual cones are much larger.2 We remark that our implementation of
the new algorithm in Maple also uses a primal variant of Barvinok’s de-
composition to unimodular cones, which was introduced in [20]. Thus the
new code should be compared to the runtimes listed in column Primal. Fi-
nally, Primal1000 refers to a variant in which Barvinok’s decomposition is
stopped when a cone has a determinant at most 1000; then the points in
the fundamental parallelepipeds are enumerated.3

All computations were stopped if unfinished after 30 minutes, thus the
table ends at dimension 11 because all randomly generated examples we tried
in dimension 12 took more than 30 minutes of calculation. The computation
times are given in CPU seconds on a computer with AMD Opteron 880
processors running at 2.4GHz.

In conclusion, the experiments indicate that the algorithms presented here
can lead to dramatic improvements upon the computation of full Ehrhart
polynomials. The fact that, for very low dimensions, the implementation
is slower than LattE macchiato, is explained by the choice of Maple as an
implementation language. Maple is an interpreted system, which is much
slower than C++, the implementation language of LattE macchiato. We
expect that the speedups of Primal1000 compared to Primal, which were

2The command is count --ehrhart-polynomial --irrational-primal.
3The command used is count --ehrhart-polynomial --irrational-primal

--maxdet=1000.
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first documented in [30], will also be obtained in a refined implementation
of our new algorithms.

The implementation is available at [3].
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[32] D. Micciancio and S. Goldwasser, Complexity of lattice problems, The Kluwer Interna-
tional Series in Engineering and Computer Science, 671, Kluwer Academic Publishers,
Boston, MA, 2002, A cryptographic perspective. MR 2042139 (2004m:94067)

[33] R. Morelli, Pick’s theorem and the Todd class of a toric variety, Adv. Math. 100
(1993), no. 2, 183–231. MR 1234309 (94j:14048)

[34] S. Verdoolaege and K. M. Woods, Counting with rational generating functions, J.
Symb. Comput. 43 (2008), no. 2, 75–91.

Velleda Baldoni: Dipartimento di Matematica, Università degli studi di
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