
ANALYTIC CONTINUATION OF A PARAMETRIC
POLYTOPE AND WALL-CROSSING

N. BERLINE AND M. VERGNE

Abstract. We define a set theoretic “analytic continuation” of
a polytope defined by inequalities. For the regular values of the
parameter, our construction coincides with the parallel transport of
polytopes in a mirage introduced by Varchenko. We determine the
set-theoretic variation when crossing a wall in the parameter space,
and we relate this variation to Paradan’s wall-crossing formulas for
integrals and discrete sums. As another application, we refine the
theorem of Brion on generating functions of polytopes and their
cones at vertices. We describe the relation of this work with the
equivariant index of a line bundle over a toric variety and Morelli
constructible support function.
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Introduction

Consider a polytope q(b) in Rd defined by a system of N linear
inequalities:

q(b) := {y ∈ Rd; 〈µi, y〉 ≤ bi, 1 ≤ i ≤ N.} (1)

In this article, we study the variation of the polytope q(b) when the
parameter b = (bi) varies in RN , but the linear forms µi are fixed (the
parametric arrangement of hyperplanes 〈µi, y〉 = bi so obtained is called
a mirage in [20]).

Our main construction is the following. Starting with a parameter
b0 which is regular (this is defined below), we construct a function
X (x1, x2, . . . , xN) on RN which is a linear combination of characteristic
functions of various semi-open coordinate quadrants in RN . Define

A(b)(y) = X (b1 − 〈µ1, y〉, . . . , bN − 〈µN , y〉).
The crucial feature of the function X is that, for b near b0, A(b)(y)

is the characteristic function of the polytope q(b), but A(b) enjoys an-
alyticity properties with respect to the parameter b when b moves in
RN , that we will explain below. So we say that A(b) is the “analytical
continuation ”of the polytope q(b) (with initial value b0).

Before stating these properties, let us give two examples. We denote
by pi the characteristic function of the closed coordinate half-space,
pi = [xi ≥ 0], and we set qi = 1 − pi = [xi < 0]. First, let q be the d-

dimensional simplex defined by the d+ 1 inequalities yi ≥ 0,
∑d

i=1 yi ≤
1. In this case we have, (see Example 13),

X (x) = p1 · · · pd+1 + (−1)dq1 · · · qd+1.

Thus X (x) is the sum of the [characteristic function of the] closed
positive coordinate quadrant in Rd+1 and of (−1)d times the open neg-
ative one. Let b = (b1, . . . , bd+1). If b1 + · · ·+ bd+1 ≥ 0, then A(b)(y) =
X (b1+y1, · · · , bd+yd, bd+1−(y1+· · ·+yd)) is the characteristic function

of the simplex {yi ≥ −bi,
∑d

i=1 yi ≤ bd+1}, while if b1 + · · ·+ bd+1 < 0,
then A(b)(y) is equal to (−1)d times the characteristic function of the

symmetric open simplex {yi < −bi,
∑d

i=1 yi > bd+1}. In particular,
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in dimension d = 1, starting with the closed interval [0, 1], the ana-
lytic continuation A(b) is the closed interval {−b1 ≤ y ≤ b2} when
b1 + b2 ≥ 0, while A(b) is (−1) times the open interval {b2 < y < −b1}
when b1 + b2 < 0 (Fig.1)

Figure 1. In blue for b = (0, 2), q(b) = [0, 2] , in red
for b = (0,−2), A(b) = (−1) times ]− 2, 0[

For the second example, we start with the tetragon illustrated in
Fig.2 defined by the 4 inequalities y2 + 2 ≥ 0, y1 + 1 ≥ 0, y1 + y2 ≤ 0,
y1 − y2 ≥ 0. In this case we have (see Example 37 and Subsection 3.5)

X (x) = p1p2p3p4 − p1q2q3p4 − q1p2p3q4 + q1q2q3q4,

a signed sum of characteristic functions of 4 semi-open quadrants.
Some values of the analytic continuation A(b) are illustrated in Figs.

2 and 3. For each value of b, it is a signed sum of semi-open polygons.
Components with a + sign are colored in blue, components with a −1
sign are colored in red. Semi-openness is indicated by dotted lines.

Figure 2. Analytic continuation of a tetragon

Let us describe now some of the properties of A(b).
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Figure 3. More analytic continuation of a tetragon

A point b = (bi) ∈ RN is called regular (with respect to the sequence
of linear forms µi) if a subset of k equations among the equations
{µi = bi} do not have a common solution if k > d. We define a tope
τ to be a connected component of the open set of regular points b in
RN . Topes are separated by hyperplanes which we call walls.

Let b0 ∈ RN be regular. Recall that we assume that q(b0) is compact.
In this case, each vertex of the polytope q(b0) belongs to exactly d
facets, in other words the polytope q(b0) is simple. Loosely speaking,
the shape of the polytope q(b) does not change when b remains close
to b0. The facets of q(b) remain parallel to those of q(b0), while its
vertices depend linearly on b. When b crosses a wall, the shape of q(b)
changes.

Let h(y) be a polynomial function on Rd. The integral∫
q(b)

h(y)dy,

and the discrete sum ∑
y∈q(b)∩Zd

h(y)

are classical topics. In particular, if h is the constant function 1, these
quantities are respectively the volume of the polytope q(b) and the
number of integral points in the polytope q(b). It is well-known that
the function b →

∫
q(b)

h(y)dy is given on each tope by a polynomial

function of b. Moreover, if we assume that the linear forms µi are
rational, the discrete sum b →

∑
y∈q(b)∩Zd h(y) is given on each tope

by a quasi-polynomial function of b. These results follow for instance
from Brion’s theorem of decomposing a polytope as a sum of its tangent
cones at vertices, [6], [9]. When the parameter b crosses a wall of the
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tope τ , the integral b→
∫
q(b)

h(y)dy is given by a different polynomial,

the discrete sum by a different quasi-polynomial. Their wall-crossing
variations have been computed by Paradan, in a more general context
of Hamiltonian geometry, using transversally elliptic operators, [18].

The function X which we construct in this article depends on the
tope τ which contains the starting value b0, and we will study its depen-
dance with respect to τ . Therefore, we write X (τ)(x) and A(τ, b)(y) =
X (τ)(b1 − 〈µ1, y〉, . . . , bN − 〈µN , y〉) instead of X (x) and A(b)(y) from
now on. The function y 7→ A(τ, b)(y) enjoys the following properties.
• When b is in the closure τ of the tope τ , A(τ, b) coincides with the
characteristic function [q(b)] of q(b).
• The function A(τ, b)(y) is a linear combination with integral coeffi-
cients of characteristic functions of bounded faces of various dimensions
of the arrangement of hyperplanes 〈µi, y〉 = bi, 1 ≤ i ≤ N .
• The integral ∫

Rd
A(τ, b)(y)e〈ξ,y〉dy

is an analytic function of (ξ, b) ∈ (Rd)∗ × RN . For b ∈ τ , it coin-
cides with

∫
q(b)

e〈ξ,y〉dy. If h(y) is a polynomial function, then b 7→∫
Rd A(τ, b)(y)h(y)dy is a polynomial function of b ∈ RN which coin-

cides with
∫
q(b)

h(y)dy when b ∈ τ .

• Moreover, if we assume that the µi are rational, the discrete sum∑
y∈Zd

A(τ, b)(y)h(y)

is a quasi-polynomial function of b, (see Definition 53 of quasi-polynomial
functions). It coincides with

∑
y∈q(b)∩Zd h(y) for b in the initial tope

and even in a neighborhood of its closure (see the precise statement in
Corollary 21 ).

For instance, let us look again at the closed interval [0, b]. For b ∈
N, the number of integral points in [0, b] is given by the polynomial
function b + 1. For a negative integer b < 0, the value b + 1 is indeed
equal to (−1) times the number of integral points in the open interval
b < y < 0 .

The key idea is to define A(τ, b) as a signed sum of closed affine
cones, shifted when b varies, so that their vertices depend linearly on
the parameter b. We use decompositions of a polytope p as a signed sum
of cones, such as the Brianchon-Gram decomposition, (see for instance
[8]).

Theorem 1 (Brianchon-Gram decomposition). Let p ⊂ Rd be a poly-
tope. For each face f of p, let taff(p, f) ⊆ Rd be the affine tangent cone
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to p at the face f. Then

[p] =
∑

f∈F(p)

(−1)dim f[taff(p, f)], (2)

where F(p) is the set of faces of p.

Here, for a set E ⊂ Rd, we denote by [E] the function on Rd which
is the characteristic function of the set E.

For regular values of b, our construction of A(τ, b) coincides with the
parallel transport of Varchenko [20], the idea of which is quite simple.
For instance, write the Brianchon-Gram formula for the closed interval
0 ≤ y ≤ b,

[0 ≤ y ≤ b] = [y ≤ b] + [y ≥ 0]− [R].

If the vertex b moves to the left, crosses the origin and becomes nega-
tive, the right hand side of the Brianchon-Gram formula becomes first,
for b = 0, the characteristic function of the point 0, then for b < 0,
the characteristic function of the open interval b < y < 0 with a minus
sign.

Actually, instead of the Brianchon-Gram decomposition, Varchenko
uses the polarized decomposition into semi-closed cones at vertices
which he obtains in [20]. However, we go beyond [20] in several ways.
First, as we already mentioned, we introduce (and compute) the “pre-
cursor” function X (τ), a sum of characteristic functions of semi-open
quadrants, which gives rise to A(τ, b) for all b. Moreover, we compute
explicitly the wall-crossing variation

[q(b)]− A(τ, b)

when b belongs to a tope adjacent to the starting tope τ . Actually,
we compute the wall crossing variation at the level of the “precursor”
function X (τ) itself.

Finally, we show that “analytic continuation” of the faces of the poly-
tope q(b0) occurs naturally, when one wants to compute

∑
y∈q(b0)∩Zd e

〈ξ,y〉

for a degenerate value of ξ.

Let us now summarize the results of this article. We need some
notations. It is more convenient to work in the framework of partition
polytopes. So, let us first recall how one goes from the framework
of linear inequalities 〈µi, y〉 ≤ bi to that of partition polytopes. A
partition polytope p(Φ, λ) is determined by a sequence Φ = (φj)1≤j≤N
of elements of a vector space F (of dimension r) and an element λ ∈ F ,
as follows:
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Definition 2.

p(Φ, λ) = {x ∈ RN ;
N∑
j=1

xjφj = λ, xj ≥ 0.}

We assume that the cone c(Φ) generated by the φj’s, is salient and
that Φ generates F . Thus the set p(Φ, λ) is compact whenever λ ∈ c(Φ)
(if λ is not in c(Φ), then p(Φ, λ) is empty.) The polytope p(Φ, λ) is, by
definition, the intersection of the affine subspace

V (Φ, λ) = {x ∈ RN ;
N∑
j=1

xjφj = λ}

with the standard quadrant

Q := {x ∈ RN ;xj ≥ 0}.
A wall in F is a hyperplane generated by r − 1 linearly independent
elements of Φ. An element λ ∈ F is called Φ-regular, if λ does not lie
on any wall. If λ ∈ c(Φ) is regular, the polytope p(Φ, λ) is a simple
polytope of dimension d = N − r contained in the affine space V (Φ, λ).

Consider the map M : RN → F given by M(x) =
∑

i xiφi. Let
V ⊂ RN be the kernel of M .

V = {x ∈ RN ;
N∑
j=1

xjφj = 0}.

So V has dimension d = N − r.
If E is a subset of RN , we denote now by [E] the function on RN

which is the characteristic function of E. Thus if E is a subset of V ,
its characteristic function in V is identified with [E] ∩ [V ].

If λ = M(b) =
∑

i biφi, the map

x→ x+ b (3)

is an isomorphism between V and the affine space V (Φ, λ) .
Let µi be the linear form −xi restricted to V . The bijection V →

V (Φ, λ) maps the polytope q(b) = {y ∈ V ; 〈µi, y〉 ≤ bi} onto p(Φ, λ).
Indeed, the point (y1 + b1, . . . , yN + bN) is in p(Φ, λ) if and only if
−yi ≤ bi.

Moreover, b is regular with respect to the sequence of linear forms µi
on V if and only if λ = M(b) is Φ-regular in F . A connected component
of the set of Φ-regular elements of F will be called a Φ-tope. Thus a
subset τ ⊂ F is a Φ-tope if and only if M−1(τ) ⊂ RN is a connected
component of the set of regular parameters, i.e. a tope with respect to
(µi).
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It is clearly equivalent to study the variation of the polytope q(b)
when b varies, or the variation of the partition polytope p(Φ, λ), when
λ varies. In this framework, the inequations xj ≥ 0 are fixed, while
the affine space V (Φ, λ) varies. For example, Fig. 4 shows the interval
[0, b], in blue, now realized as {x1 ≥ 0, x2 ≥ 0, x1 + x2 = b}. The
analytic continuation A(τ, b) for b < 0 is colored in red on this figure,
where a minus sign is assigned to red.

Figure 4. F = R,Φ = (1, 1).

We fix a Φ-tope τ ⊂ F , and consider λ ∈ τ . Recall the combinatorial
description of the faces of the partition polytope p(Φ, λ). We denote by
G(Φ, τ) (resp. B(Φ, τ)) the set of I ⊆ {1, . . . , N} such that {φi, i ∈ I}
generates F (resp. is a basis of F ) and such that τ is contained in
the cone generated by {φi, i ∈ I}. The set of faces (resp. vertices) of
p(Φ, λ) is in one-to-one correspondence with G(Φ, τ) (resp. B(Φ, τ)).
The face which corresponds to I is

fI(Φ, λ) = {x ∈ RN
≥0,

N∑
j=1

xjφj = λ, xj = 0 for j ∈ Ic}. (4)

The affine tangent cone to p(Φ, λ) at the face fI(Φ, λ) is

tI(Φ, λ) = {x ∈ RN ,

N∑
j=1

xjφj = λ, xj ≥ 0 for j ∈ Ic}. (5)

If λ is in c(Φ), but is not in the tope τ , then the partition polytope
p(Φ, λ) is not empty, but its faces are no longer in one-to-one correspon-
dence with G(Φ, τ), (see Fig.2). Nevertheless, the cone in (5) makes
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sense for every λ ∈ F : it remains “the same cone” {x ∈ V ;xj ≥ 0, j ∈
Ic} up to a shift, under the map V (Φ, λ)→ V (see Formula (10)).

We introduce now the main character of this story, the function on
RN previously denoted by X (τ).

Definition 3. The Geometric Brianchon-Gram function is

X (Φ, τ) =
∑

I∈G(Φ,τ)

(−1)|I|−dimF
∏
j∈Ic

[xj ≥ 0].

Let us compute this function for the case of Φ = (1, 1) in F = R.
Then

X (Φ, τ) = [x1 ≥ 0] + [x2 ≥ 0]− [R2]

is equal to

[x1 ≥ 0, x2 ≥ 0]− [x1 < 0, x2 < 0],

the characteristic function of the closed positive quadrant minus the
characteristic function of the open negative quadrant, (Fig. 5).

Figure 5. The function X (Φ, τ) for Φ = (1, 1)

If λ ∈ τ , the Brianchon-Gram theorem implies

X (Φ, τ)[V (Φ, λ)] = [p(Φ, λ)], (6)

the characteristic function of the partition polytope p(Φ, λ). However,
the function X (Φ, τ)[V (Φ, λ)] is defined for any λ ∈ F . It is a signed
sum of characteristic functions of closed cones intersected with the
affine space V (Φ, λ).
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For instance, in the case of Φ = (1, 1), taking the product of X (Φ, τ)
with the characteristic function of the affine line x1 +x2 = b, we clearly
recover the analytic continuation pictured in Fig. 4.

One of our first results (and our main technical tool) (Theorem 25) is
the fact that the Brianchon-Gram combinatorial function X(Φ, τ)(p, q)
coincides with the analogous function associated with any Lawrence-
Varchenko polarized decomposition of a polytope into semi-closed cones
at vertices [15], [20].

From this result, we deduce that the function X (Φ, τ)[V (Φ, λ)] is the
signed sum of characteristic functions of semi-open polytopes, in par-
ticular the support of this function is bounded for any λ ∈ F (Corollary
29).

Reverting to the framework of linear inequalities, we define now
A(τ, b) to be the inverse image of X (Φ, τ) under the map v → v+b from
V to RN . For b ∈ τ , A(τ, b) is the characteristic function of the poly-
tope q(b). For any value of b, it follows from the definition that A(τ, b)
is the signed sum of the characteristic functions of the tangent cones
to the faces of the initial polytope q(b0), with b0 ∈ τ , followed“by con-
tinuity ”. The above qualitative result implies that A(τ, b) is a signed
sum of bounded faces of various dimensions of the mirage µi = bi. It is
easy to see that A(τ, b) enjoys the analyticity properties stated above.

Our main result is a wall crossing formula which we prove in a purely
combinatorial context.

As the space RN is the disjoint union of the semi-closed quadrants
QB

neg := {x = (xi);xi < 0 for i ∈ B, xi ≥ 0 for i ∈ Bc}, we write
X (Φ, τ) in terms of the characteristic functions of these quadrants.

We introduce the following polynomial in the variables pi and qi.

Definition 4. Let τ be a Φ-tope. The Combinatorial Brianchon-Gram
function associated to the pair (Φ, τ) is

X(Φ, τ)(p, q) =
∑

I∈G(Φ,τ)

(−1)|I|−dimF
∏
i∈Ic

pi
∏
i∈I

(pi + qi). (7)

We recover X (Φ, τ) when we substitute pi = [xi ≥ 0] and qi =
[xi < 0] in X(Φ, τ)(p, q) (so that pi + qi = 1).

For example, when Φ = (1, 1), we have

X(Φ, τ) = p1(p2 + q2) + p2(p1 + q1)− (p1 + q1)(p2 + q2) = p1p2 − q1q2.

The polynomial X(Φ, τ) enjoys remarkable properties. Let us say
that the quadrant QB

neg is Φ-bounded, if the intersection of its closure

QB
neg with V is reduced to 0. Equivalently, the intersection of QB

neg with
the affine space V (Φ, λ) is bounded for any λ ∈ F .
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We have

X(Φ, τ)(p, q) =
∑
B

zB
∏
i∈B

pi
∏
i∈Bc

qi.

where, for any subset B ⊆ {1, . . . , N} such that zB 6= 0, the associated
quadrant QB

neg is Φ-bounded. The coefficients zB are in Z and we give
an algorithmic formula for them.

As we will observe in the last section, the decomposition in Φ-
bounded quadrants of X(Φ, τ) is an analogue of the fact that the ∂
cohomology spaces of a compact complex manifold are finite dimen-
sional.

Our main result is Theorem 33, where we compute the function
X(Φ, τ1) − X(Φ, τ2), when τ1 and τ2 be two adjacent topes (mean-
ing that the intersection of their closures is contained in a wall and
spans this wall).

We will not state the formula for X(Φ, τ1) −X(Φ, τ2) in this intro-
duction, but let us just mention a significant corollary, the wall-crossing
formula for the polytope p(Φ, λ). Let A be the set of i ∈ {1, . . . , N}
such that φi belongs to the open side of H which contains τ1 (hence
−φi belongs to the side of τ2). Let

pflip(Φ, A, λ) = {x ∈ V (Φ, λ);xi < 0 if i ∈ A, xi ≥ 0 if i /∈ A}.

Thus pflip(Φ, A, λ) is a semi-closed bounded polytope in V (Φ, λ).

Theorem 5. Let τ1 and τ2 be adjacent topes. If λ ∈ τ2, we have

X (Φ, τ1)[V (Φ, λ)] = [p(Φ, λ)] + (−1)|A|[pflip(Φ, A, λ)].

This formula is clearly inspired by the results of Paradan [18]. In
turn, we show that it implies the convolution formula of Paradan which
expresses the jump of the number of lattice points of the partition poly-
tope in terms of the number of lattice points of some lower dimensional
polytopes associated to Φ ∩H.

The above formula implies that, after crossing a wall, the analytic
continuation of the original polytope p(Φ, λ) is the signed sum of two
polytopes, among which one, but no more than one, may be empty.
As illustrated in Section 3.5, we see the new polytope pflip(Φ, A, λ)
starting to show his nose when λ crosses the wall. To be precise, the
wall H must separate two chambers, not just two topes, (as explained
in Remark 35) in order for the new polytope pflip(Φ, A, λ) to be not
empty.

When F is provided with a lattice Λ, and the φi’s are in Λ, the data
(Φ, λ) parameterize a toric variety together with a line bundle. The
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zonotope

b(Φ) := {
N∑
i=1

tiφi; 0 ≤ ti ≤ 1}

plays an important role in the “continuity properties” of our formulae
in the discrete case, where, for a tope τ , the “neighborhood” of τ ∩Λ is
the fattened tope (τ −b(Φ))∩Λ. In Section 4, where we study discrete
sums over partition polytopes, we recover the quasi-polynomiality over
fattened topes which was previously obtained in [12], [19], [13], as well
as wall crossing formulae. Remarkably, the proofs which we give in the
present article are based only on the Brianchon-Gram decomposition
of a polytope and some set theoretic computations.

Our original motivation for the present work was to understand
Brion’s formula when specialized at a degenerate point. Let p ⊂ V
be a full-dimensional polytope in a vector space V equipped with a
lattice VZ. Consider the discrete sum

S(p)(ξ) =
∑

x∈VZ∩p

e〈ξ,x〉.

Brion’s theorem expresses the analytic function S(p)(ξ) as the sum

S(p)(ξ) =
∑
s∈V(p)

S(s+ cs)(ξ). (8)

Here s runs over the set of vertices of p, and s+ cs is the tangent cone
at p at the vertex s. Now the function S(s + cs)(ξ) is a meromorphic
function of ξ. Its poles are the points ξ ∈ V ∗ such that ξ vanishes on
some edge generator of the cone cs (or equivalently, such that ξ takes
the same value at the vertex s and some adjacent vertex s′ of p).

It is well known that if ξ is regular with respect to p, (i.e. 〈ξ, s〉 6=
〈ξ, s′〉 for adjacent vertices), Brion’s formula is the combinatorial trans-
lation of the localization formula in equivariant cohomology [4], in a
case where the fixed points are isolated. The case where ξ is not regu-
lar corresponds to the case where the variety of fixed points has com-
ponents of positive dimension. We obtain indeed the combinatorial
translation of the localization formula in this degenerate case. The
vertices must be replaced by the faces on which ξ is constant which are
maximal with respect to this property. For such a face f, the tangent
cone must be replaced by the transverse cone to p along f. However,
the formula is “nice” only under some conditions (satisfied for example
when the polytope p is simple). The formula involves the “analytic
continuation” of the face f obtained by slicing the polytope p by affine
subspaces parallel to f, Fig.15
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Finally, in the last section, we sketch the relation of this work with
the cohomology of line bundles over a toric variety. In the case where
the φi’s generate a lattice in F , a Φ-tope τ gives rise to a toric variety
Mτ . Then, the value of the function X (Φ, τ) computed at a point m ∈
ZN ⊂ RN is the multiplicity of the character m in the alternate sum of
the cohomology groups of the line bundle Lλ on Mτ which corresponds
to λ =

∑
imiφi. In other words, the function X (Φ, τ) induces on each

affine space V (Φ, λ) the constructible function associated by Morelli
[16] to the line bundle Lλ on Mτ .

The continuity result (Corollary 21) implies that the function λ →
dimH0(Mτ , λ) is a quasi-polynomial on the fattened tope (τ−b(Φ))∩Λ.
We give some examples of computations in the last section.

These results have been presented by the second author M.V. in the
Workshop: Arrangements of Hyperplanes held in Pisa in June 2010.
M.V. thanks C. De Concini, H. Schenck and M. Wachs for numerous
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during this special period, and thanks the Centro de Giorgi for provid-
ing such a stimulating atmosphere. The idea of this article arose while
both authors were enjoying a Research in Pairs stay at Mathematisches
Forschungsinstitut Oberwolfach in March/April 2010. The support of
MFO is gratefully acknowledged.

We thank P. Johnson for drawing our attention to Varchenko’s work
and to the paper [10] where applications of Varchenko’s work to wall
crossing formulae for Hurwicz numbers are obtained.
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List of notations

A(b), A(τ, b) a function on Rd,
the analytic continuation of a polytope

[E] characteristic function of a set E ⊆ Rd or E ⊆ RN

F r-dimensional real vector space; λ ∈ F
Φ a sequence of N non zero vectors φi in F
ei canonical basis of RN

xi coordinates functions on RN

M the map RN → F ;M(ei) = φi
V (Φ), V {x ∈ RN ;

∑
i xiφi = 0}

d N − r; the dimension of V
V (Φ, λ) {x ∈ RN ;

∑
i xiφi = λ}

p(Φ, λ) {x ∈ RN ;xi ≥ 0;
∑

i xiφi = λ}
Partition polytope a polytope p(Φ, λ)
Λ lattice in F ; λ ∈ Λ
k(Φ) the function λ→ cardinal p(Φ, λ)

Partition function the function k(Φ)
Q the standard quadrant {x ∈ RN ;xi ≥ 0}
I, J,K,A,B subsets of {1, 2, . . . , N}
Ic complementary subsets to I in {1, 2, . . . , N}
ΦI (φi, i ∈ I)
c(Φ), c(ΦI) cone generated by Φ,ΦI

a(K) the cone in RN defined as
{x ∈ RN ;xj ≥ 0 for j ∈ Kc}

a0(K) the cone V ∩ a(K)
tK(Φ, λ) a(K) ∩ V (Φ, λ)
Φ-basic subset I a subset I such that φi, i ∈ I, is a basis of F

Φ-generating subset I a subset I such that φi, i ∈ I, generates F
B(Φ) the set of Φ-basic subsets
G(Φ) the set of Φ-generating subsets
ρΦ,I ρΦ,I : RN → V (Φ) with kernel ⊕i∈IRei
gIj ρΦ,I(ej), j ∈ Ic
wallH hyperplane in F generated by r − 1 vectors in Φ
regular λ λ does not belong to any wall H
tope τ τ ⊂ F, a connected component

of the set of regular elements
B(Φ, τ) the set of Φ-basic subsets I such that τ ⊂ c(ΦI)
G(Φ, τ) the set of Φ-generating subsets I such that τ ⊂ c(ΦI)
arrangementH(λ) the collection of the hyperplanes xi = 0 in V (Φ, λ)
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vertex s of the arrangementH(λ); s belongs to
d hyperplanes of H(λ)

sI(Φ, λ) the vertex of H(λ) such that sj = 0 for j ∈ Ic
fI(Φ, λ), fI the face of p(Φ, λ) indexed by I; defined by

p(Φ, λ) ∩ {xj = 0, j ∈ Ic}
taff(p, f) tangent affine cone to a polytope p at the face f
X (Φ, τ)

∑
I∈G(Φ,τ)(−1)|I|−dimF

∏
j∈Ic [xj ≥ 0]

X(Φ, τ)(p, q)
∑

I∈G(Φ,τ)(−1)|I|−dimF
∏

j∈Ic pj
∏

i∈I(pi + qi)

wB
∏

j∈Bc pj
∏

i∈B qi
W space of polynomials with basis wB
Geom substituting pi = [xi ≥ 0], qj = [xj < 0] in wB
b(Φ) the zonotope generated by Φ;

{
∑N

i=1 tiφi; 0 ≤ ti ≤ 1}
QB

neg {x = (xi), xi < 0 for i ∈ B ; xi ≥ 0 for i ∈ Bc}
ΦB

flip the sequence (σiφi, 1 ≤ i ≤ N), where
σi = −1 if i ∈ B; σi = 1 if i /∈ B

c̃(ΦB
flip) {

∑
i xiφi, x ∈ QB

neg}
c̃Z(ΦB

flip) {
∑

i xiφi, x ∈ QB
neg ∩ ZN}

β linear form on RN

Kc,+
β {j ∈ Kc; 〈β, gKj 〉 > 0}

Kc,−
β {j ∈ Kc; 〈β, gKj 〉 < 0}

a(K, β) {x ∈ RN ;xi ≥ 0 , i ∈ Kc
β

+;xi < 0 , i ∈ Kc
β
−}

a0(K, β) the cone V ∩ a(K, β)

Y (Φ, τ, β)
∑

K∈B(Φ,τ)(−1)|K
c
β
−|∏

i∈Kc
β

+ pi
∏

i∈Kc
β
− qi

∏
i∈K(pi + qi)

p(Φ, A, λ) {x ∈ V (Φ, λ), xi > 0 for i ∈ A, xi ≥ 0 for i ∈ Ac}
pflip(Φ, A, λ) {x ∈ V (Φ, λ) xi < 0 for i ∈ A, xi ≥ 0 for i ∈ Ac}
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1. Definition of the analytic continuation

1.1. Some cones related to a partition polytope. In this article,
there will be plenty of cones. A cone will always be an affine polyhedral
convex cone. A cone will be called flat if it contains an affine line,
otherwise, it will be called salient.

Let F be a real vector space of dimension r, and let Φ = (φ1, . . . , φN)
be a sequence of N non zero elements of F . We assume that Φ generates
F as a vector space.

The standard basis of RN is denoted by ei with dual basis the linear
forms xi. We denote by M : RN → F the surjective map which
sends the vector ei to the vector φi. The kernel of M is a subspace of
dimension d = N − r which will be denoted by V (Φ) or simply V when
Φ is understood.

V (Φ) := {x ∈ RN ;
∑
i

xiφi = 0}.

We denote by Q the standard quadrant

Q := {x ∈ RN ;xi ≥ 0}.

The cone c(Φ) generated by Φ is the image of Q by M . Assume that the
cone c(Φ) is salient. In other words, there exists a linear form a ∈ F ∗
such that 〈a, φi〉 > 0 for all 1 ≤ i ≤ N . This is also equivalent to the
fact that V ∩Q = 0.

If I is a subset of {1, 2, . . . , N}, we denote by Ic the complementary
subset to I in {1, 2, . . . , N}.

Definition 6. If I is a subset of {1, 2, . . . , N}, let

a(I) = {x ∈ RN ;xj ≥ 0 for j ∈ Ic}

and let

a0(I) = V ∩ a(I) = {x ∈ V ; xj ≥ 0 for j ∈ Ic}
be the intersection of V with the cone a(I).

Thus a(I) is the product of the positive quadrant in the variables Ic,
with a vector space of dimension |I|. The cone a(I) is called an angle
by Varchenko. It is never salient, except if I = ∅. With this notation,
the positive quadrant Q is a(∅).

We now analyze the cone a0(I) ⊆ V . A subset I ⊆ {1, 2, . . . , N}
such that {φi, i ∈ I} is a basis of F will be called Φ-basic. We denote
by B(Φ) the set of Φ-basic subsets. A subset I ⊆ {1, 2, . . . , N} such
that {φi, i ∈ I} generates F will be called Φ-generating. We denote by
G(Φ) the set of Φ-generating subsets.
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Let I be Φ-basic. Then the cardinal of Ic is d = N − r and the
restrictions to V of the linear forms xj, with j ∈ Ic, form a basis of V ∗.
Hence a0(I) is a cone of dimension d in V with d generators, in other
words a simplicial cone of full dimension in the vector space V . Let us
describe the edges of the simplicial cone a0(I). We have

RN = V (Φ)⊕ (⊕i∈IRei),
and we denote by ρΦ,I the corresponding linear projection RN → V .
For j ∈ Ic, we write φj =

∑
i∈I ui,jφi.

Lemma 7. Let I be Φ-basic. For j ∈ Ic, let

gIj = ρΦ,I(ej) = ej −
∑
i∈I

ui,jei.

Then the d vectors gIj are the generators of the edges of the simplicial
cone a0(I).

Now, let I be a generating subset. Then the restrictions to V of
the linear forms xj, j ∈ Ic, are linearly independent elements of V ∗.
The cone a0(I) is again the product of a simplicial cone of dimension
|Ic| by a vector space of dimension |I| − r More precisely, if K is any
Φ-basic subset contained in I, the cone a0(I) is the product of the cone
generated by ρΦ,K(ej), j ∈ Ic, by the vector space generated by ρΦ,K(ei)
with i ∈ I \K.

1.2. Vertices and faces of a partition polytope. Recall that, for
λ ∈ F , we denote by V (Φ, λ) ⊂ RN the affine subspace

{x ∈ RN ;
∑
i

xiφi = λ}.

The intersections of the coordinates hyperplanes {xi = 0} with V (Φ, λ)
form an arrangement H(λ) of N affine hyperplanes of V (Φ, λ).

By definition, a vertex of this arrangement is a point s ∈ V (Φ, λ) such
that s belongs to at least d independent hyperplanes. The arrangement
H(λ) is called regular if no vertex belongs to more than d hyperplanes.
A Φ-wall H is a hyperplane of F spanned by r−1 linearly independent
elements of Φ. Thus H(λ) is regular if and only if λ does not belong
to any Φ-wall, that is, if λ is regular.

By definition, a face of the arrangement H(λ) is the set of elements
x ∈ V (Φ, λ) which satisfy a subset of the set of relations {xi ≥ 0, xj ≤
0, xk = 0}.

Recall that the partition polytope p(Φ, λ) is the intersection of the
affine space V (Φ, λ) with the positive quadrant Q. Thus it is a bounded
face of the arrangement of hyperplanes H(λ).
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If I ⊂ {1, . . . , N} is Φ-basic, then λ has a unique decomposition
λ =

∑
i∈I xiφi. If λ is regular, xi 6= 0 for all i.

Definition 8. Let I be a Φ-basic subset, let λ =
∑

i∈I xiφi. Then
sI(Φ, λ) is the vertex of the arrangement H(λ) defined by sI(Φ, λ) =
(si) where si = xi if i ∈ I, and sj = 0 if j ∈ Ic.

Observe that sI(Φ, λ) depends linearly on λ.
If λ is regular, the vertices of the arrangement H(λ) are in one to

one correspondence I 7→ sI(Φ, λ) with the set B(Φ) of Φ-basic subsets
of {1, . . . , N}.

Definition 9. For I a subset of {1, 2, . . . , N}, define

tI(Φ, λ) = a(I) ∩ V (Φ, λ).

If I is a Φ-basic subset, then the cone tI(Φ, λ) is the shift sI(Φ, λ) +
a0(I) of the fixed simplicial cone a0(I) by the vertex sI(Φ, λ) which
depends linearly of λ.

tI(Φ, λ) = a(I) ∩ V (Φ, λ) = sI(Φ, λ) + a0(I). (9)

Similarly, if I is a Φ-generating subset, choose a Φ-basic subset K
contained in I, then the cone tI(Φ, λ) is the shift of the fixed cone
a0(I) by the vertex sK(Φ, λ) which depends linearly of λ.

tI(Φ, λ) = a(I) ∩ V (Φ, λ) = sK(Φ, λ) + a0(I). (10)

So, one can say that the set tI(Φ, λ) varies analytically with λ, when-
ever I is a generating subset. At least it “keeps the same shape”. This
is not the case when I is not generating, for example when I = ∅.
Indeed t∅(Φ, λ) is the partition polytope p(Φ, λ), and it certainly does
not vary “analytically”.

We now analyze the faces of the partition polytope p(Φ, λ) and the
corresponding tangent cones.

If τ is a Φ-tope, we denote by B(Φ, τ) ⊆ B(Φ) the set of basic
subsets I such that τ is contained in the cone c(φI) generated by the
φi, i ∈ I. In other words, the equation λ =

∑
i∈I xiφi can be solved with

positive xi. Equivalently, the corresponding vertex sI(Φ, λ) belongs to
the polytope p(Φ, λ). Thus when λ is regular, there is a one-to-one
correspondence between the elements I ∈ B(Φ, τ) and the vertices of
the polytope p(Φ, λ).

When λ belongs to the closure of a tope τ , every vertex of p(Φ, λ) is
still of the form sI(Φ, λ) with I ∈ B(Φ, τ), but two Φ-basic subsets can
give rise to the same vertex.

Let I ∈ B(Φ, τ). Assume that λ is regular, so that all coordinates
si of sI(Φ, λ) with i ∈ I are positive. Then it is clear that the tangent
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cone to p(Φ, λ) at the vertex sI(Φ, λ) is the cone determined by the
inequations xi ≥ 0 for i ∈ Ic, while the sign of the coordinates xi
with i ∈ I are arbitrary, In other words, it is the simplicial affine cone
tI(Φ, λ)

We denote by G(Φ, τ) ⊆ G(Φ) the set of generating subsets I such
that τ is contained in the cone c(φI) generated by the φi, i ∈ I.

If I ∈ G(Φ, τ), the intersection of p(Φ, λ) with {xj = 0, j ∈ Ic} is a
face fI(Φ, λ) of dimension |I|−r of the polytope p(Φ, λ). The vertices of
this face are the points sK(Φ, λ) corresponding to all the Φ-basic subsets
K contained in I. The affine tangent cone taff(p(Φ, λ), fK(Φ, λ)) to the
polytope p(Φ, λ) along the face fK(Φ, λ) is

taff(p(Φ, λ), fK(Φ, λ)) = tI(Φ, λ) = a(I) ∩ V (Φ, λ).

1.3. The Brianchon-Gram function. Summarizing, for λ ∈ τ , there
is a one-to one correspondence between the set of faces of the polytope
p(Φ, λ) and the set G(Φ, τ). The Brianchon-Gram theorem implies, for
λ ∈ τ ,

[p(Φ, λ)] =

 ∑
I∈G(Φ,τ)

(−1)|I|−dimF [a(I)]

 [V (Φ, λ)].

When λ varies, the right hand side is obtained by intersecting a number
of fixed cones in RN with the varying affine space V (Φ, λ). It is natural
to introduce the function on RN

X (Φ, τ) =
∑

I∈G(Φ,τ)

(−1)|I|−dimF [a(I)]

=
∑

I∈G(Φ,τ)

(−1)|I|−dimF
∏
j∈Ic

[xj ≥ 0]. (11)

that is, the Geometric Brianchon-Gram function which we mentioned
in the introduction.

For λ ∈ τ , we have

X (Φ, τ)[V (Φ, λ)] = [p(Φ, λ)], (12)

the characteristic function of the partition polytope p(Φ, λ) ⊂ RN .
Let us now consider the function X (Φ, τ)[V (Φ, λ)] for any λ ∈ F .
By Equations (9) and (10), we have

X (Φ, τ)[V (Φ, λ)] =
∑

I∈G(Φ,τ)

(−1)|I|−dimF [sK(Φ, λ) + a0(I)].

Here, for each I ∈ G(Φ, τ), we chooseK ⊂ I, a basic subset contained
in I.

Nicole
Note
K doit etre I



20 N. BERLINE AND M. VERGNE

We thus see that X (Φ, τ)[V (Φ, λ)] is constructed as follows. Start
from the polytope p(Φ, λ0) with λ0 ∈ τ , write the characteristic func-
tion of p(Φ, λ0) as the alternate sum of its tangent cones at faces,
and when moving λ in the whole space F , follow these cones by mov-
ing their vertex linearly in function of λ. As all the sets I enter-
ing in the formula for X (Φ, τ) are generating, the individual pieces
a(I) ∩ V (Φ, λ) = sK(Φ, λ) + a0(I) keep the same shape.

It is clear that the support of the function X (Φ, τ)[V (Φ, λ)] is a union
of faces of various dimensions of the arrangement H(λ). We will show
that it is is a union of bounded faces of this arrangement, for any λ ∈ F
(Corollary 29).

Remark 10. Chambers rather than topes are relevant to wall crossing.
However, we preferred to use topes, because topes are naturally related
to the whole set of vertices of the arrangement H(λ). A chamber is a
connected component of the complement in F of the union of all the
cones spanned by (r − 1)-elements of F . Chambers are bigger than
topes, the closure of a chamber is a union of closures of topes. See
Figure 6. But if τ1 and τ2 are contained in the same chamber, we have
G(Φ, τ1) = G(Φ, τ2), hence X(Φ, τ1) = X(Φ, τ2).

Figure 6. Left, topes for Φ = (φ1, φ2, φ3, φ1 +φ2 +φ3).
Right, chambers.

2. Signed sums of quadrants

2.1. Continuity properties of the Brianchon-Gram function.
Recall that we defined in the introduction the following polynomial in
the variables pi and qi.
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Definition 11. Let τ be a Φ-tope. The Combinatorial Brianchon-
Gram function associated to the pair (Φ, τ) is

X(Φ, τ)(p, q) =
∑

I∈G(Φ,τ)

(−1)|I|−dimF
∏
j∈Ic

pj
∏
i∈I

(pi + qi). (13)

If the tope τ is not contained in c(Φ), the set G(Φ, τ) is empty and
X(Φ, τ) = 0. Otherwise, if τ ⊂ c(Φ), the sum defining X(Φ, τ) is
indexed by all the faces of the polytope p(Φ, λ0) (for any choice of
λ0 ∈ τ).

We recover X (Φ, τ) when we substitute [xi ≥ 0] for pi and [xi < 0]
for qi in X(Φ, τ)(p, q) (so that pi + qi = 1).

The Combinatorial Brianchon-Gram function is a particular element
of the space W below.

Definition 12. Let W be the subspace of Q[p1, . . . , pN , q1, . . . , qN ] which
consists of linear combinations of the monomials

wB =
∏
j∈Bc

pj
∏
i∈B

qi

where B runs over the subsets of {1, . . . , N}.

Thus we have
X(Φ, τ) =

∑
B

z(Φ, τ, B)wB, (14)

with coefficients z(Φ, τ, B) ∈ Z.
Remark : For the subset B = {1, 2, . . . , N}, the coefficient z(Φ, τ, B) is
(−1)d = (−1)N−r.

Example 13 (The standard knapsack). Let F = R, φi = 1 for i =
1, . . . , N , and τ = R>0. From the usual inclusion-exclusion relations,
we get

X(Φ, τ) = p1 · · · pN − (−1)Nq1 · · · qN . (15)

An element in W gives a function on RN by the following substitu-
tion.

Definition 14. We denote by Geom the map from W to the space of
functions on RN defined by substituting [xi ≥ 0] for pi and [xj < 0] for
qj.

Later, we will use other substitutions.

We prove now some ”continuity” properties of the Combinatorial
Brianchon-Gram function when λ reaches the closure of the tope τ .
Actually, these properties are shared by any element of the space W
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which satisfies the hypothesis of Proposition 19 below. We first intro-
duce some definitions and prove an easy lemma.

Definition 15. The zonotope b(Φ) is the subset of F defined by

b(Φ) = {
N∑
i=1

tiφi; 0 ≤ ti ≤ 1}.

When τ is a tope contained in c(Φ), the domain τ − b(Φ) := {x −
y, x ∈ τ, y ∈ b(Φ)} will play a crucial role in “continuity properties” of
our functions. Remark that τ − b(Φ) is a fattening of τ which contains
the closure of the tope τ . Usually the set of integral points in τ − b(Φ)
is larger than the set of integral points in τ .

Definition 16. For B ⊆ {1, . . . , N},
• QB

neg ⊂ RN is the semi-closed quadrant

QB
neg = {x = (xi), xi < 0 for i ∈ B, xi ≥ 0 for i ∈ Bc},

• ΦB
flip is the sequence [σiφi, 1 ≤ i ≤ N ], where σi = −1 if i ∈ B and

σi = 1 if i /∈ B.
• c̃(ΦB

flip) ⊂ F is the semi-closed cone

c̃(ΦB
flip) = {

∑
i

xiφi, x ∈ QB
neg}

and

c̃Z(ΦB
flip) = {

∑
i

xiφi, x ∈ QB
neg ∩ ZN}.

With this notation, the standard quadrant is

Q = Q∅neg.

Remark that the closure of the semi-closed cone c̃(ΦB
flip) is the closed

cone c(ΦB
flip).

We recall the following lemma.

Lemma 17. The following conditions are equivalent:
(i) The cone c(ΦB

flip) is salient

(ii) Q
B

neg ∩ V = {0}
(iii) For any λ ∈ F , V (Φ, λ) ∩QB

neg is bounded.

Lemma 18. Let τ ⊂ c(Φ) be a tope and τ its closure. Let B be a
subset of {1, 2, . . . , N}. Assume that the semi-open cone c̃(ΦB

flip) and
the tope τ are disjoint. Then
(i) τ is disjoint from the closed cone c(ΦB

flip).
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(ii) The closure τ of τ is disjoint from the semi-open cone c̃(ΦB
flip).

(iii) τ − b(Φ) is disjoint from c̃Z(ΦB
flip).

Proof. (i) Assume that the semi-open cone c̃(ΦB
flip) and the tope τ are

disjoint. As τ is open, it is disjoint from the closure c(ΦB
flip) of c̃(ΦB

flip).
(ii) Choose z small in τ . As τ ⊂ c(Φ), we can write z =

∑
a∈A εaφa

with A a subset of {1, 2, . . . , N} and εa > 0. As τ is a cone, we may
assume the εa very small. Let λ ∈ τ . Then λ + z ∈ τ . Now, if λ
belongs also to c̃(ΦB

flip), we may write λ =
∑N

i=1 xiφi with xi < 0 if

i ∈ B and xi ≥ 0 if i ∈ Bc and we see that λ + z is still in c̃(ΦB
flip) if

εa are sufficiently small. This contradicts the fact that c̃(ΦB
flip) ∩ τ is

empty. So (ii) is proven.
Let us prove (iii). Assume that there exist (ni) ∈ ZN , with ni < 0

for i ∈ B and ni ≥ 0 for i /∈ B, such that
∑

i niφi ∈ τ − b(Φ). Thus
there exist (ti) with 0 ≤ ti ≤ 1, for i = 1, . . . , N , and λ ∈ τ , such
that

∑
i(ni + ti)φi = λ. As ni are integers, we have ni ≤ −1 hence

ni + ti ≤ 0 for i ∈ B. We have also ni + ti ≥ 0 for i /∈ B. It follows
that λ ∈ τ ∩ c(ΦB

flip). This contradicts (ii). �

The following proposition states continuity properties on closures
and beyond.

Proposition 19. Let τ ⊂ c(Φ) be a tope and let Z =
∑

B zBwB ∈ W
be such that∑

B

zB[QB
neg] [V (Φ, λ)] = [p(Φ, λ)] for every λ ∈ τ. (16)

Then
(i) z∅ = 1.
(ii) The equation ∑

B

zB[QB
neg] [V (Φ, λ)] = [p(Φ, λ)]

still holds for every λ ∈ τ .
(ii) For λ ∈ τ − b(Φ), we have∑

B

zB[QB
neg][V (Φ, λ) ∩ ZN ] = [p(Φ, λ) ∩ ZN ].

Proof. Let λ ∈ τ and x ∈ p(Φ, λ). Then x ∈ Q = Q∅neg. As the

quadrants QB
neg are pairwise disjoint, x /∈ QB

neg for B 6= ∅ hence (16)
implies (i).

Next, let B 6= ∅. Let λ ∈ τ . Assume there is an x ∈ QB
neg ∩ V (Φ, λ).

Then x /∈ p(Φ, λ), thus (16) implies that zB = 0. Hence, if zB 6= 0, the
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semi-open cone c̃(ΦB
neg) and the tope τ are disjoint. We can then apply

Lemma 18. As τ is disjoint from c̃(ΦB
neg), we see that V (Φ, λ) does not

intersect any of the QB
neg with zB 6= 0 and QB

neg different of Q. This
implies (ii). In the same way, we obtain (iii). �

Example 20 (See Fig.7). Let N = 3, dimF = 2, Φ = (φ1, φ2, φ3 =
φ1+φ2). If τ1 is the open cone generated by (φ1, φ3), we have X(Φ, τ1) =
(p1 + q1)(p2 + q2)p3 + (p1 + q1)p2− (p1 + q1)(p2 + q2)(p3 + q3) = p1p2p3−
p1q2q3 + q1p2p3− q1q2q3. We can check that X(φ, τ1) satisfies the prop-
erties (ii) and (iii) of Proposition 19 on Fig. 7.

Figure 7. (Example 20). In blue, −b(Φ) is the closed
hexagon, τ and τ − b(Φ) are open sets. For B = (2, 3),
c̃Z(ΦB

neg) is the set of lattice points in the red zone, mφ1−
nφ3 with m ≥ 1 and n ≥ 2.

Corollary 21. (Continuity on the closure of a tope τ .) Let Φ =
(φj)1≤j≤N be a sequence of non zero elements of a vector space F ,
generating F, and spanning a salient cone and let τ ⊂ c(Φ) be a tope
relative to Φ .
(i) If λ belongs to the closure τ of the tope τ , then we have the equality
of characteristic functions of sets

X (Φ, τ)[V (Φ, λ)] = [p(Φ, λ)].
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(ii) If λ ∈ τ−b(Φ), we still have the equality of characteristic functions
of sets of lattice points

X (Φ, τ)[V (Φ, λ)] [ZN ] = [p(Φ, λ) ∩ ZN ].

Remark 22. There are other elements Z =
∑
zBwB which satisfy

(16). The simplest one is Z = w∅ = p1 · · · pN . However it does not
enjoy the analytic properties of X (Φ, τ), see Theorem 54.

2.2. Polarized sums. We now introduce another function on RN re-
lated to the polarized decomposition of a polytope as a signed sums of
polarized semi-closed cones at the vertices.

In addition to the data of the previous section, we use here a linear
form β on RN , regular with respect to Φ in the following sense.

Let I be a basic subset for Φ, and recall the description of the cone
a0(I) given in Lemma 7 with generators gIj = ρΦ,I(ej):

a0(I) =
∑
j∈Ic

R≥0g
I
j .

We assume that β is such that its restriction to V does not vanish on
any edge gIj of the simplicial cones a0(I) when I varies in B(Φ). That
is 〈β, ρΦ,I(ej)〉 6= 0 for all I ∈ B(Φ) and j ∈ Ic.

We associate to β the “polarized” cone

a0(I, β) =
∑

j;〈β,gIj 〉>0

R≥0g
I
j +

∑
j;〈β,gIj 〉<0

R<0g
I
j .

This is the cone obtained by reversing the direction of some of the
generators of the simplicial cone a0(I), in order that β takes positive
value on all of them. Note however the delicate condition on signs.

Now all the cones a0(I, β) are contained in the half space of V de-
termined by β ≥ 0.

For each K ∈ B(Φ), we denote by Kc
β

+ (resp. Kc
β
−) the set of j ∈ Kc

such that 〈β, ρΦ,Kej〉 > 0 ( resp. 〈β, ρΦ,Kej〉 < 0).

Definition 23. If K is a subset of {1, 2, . . . , N}, we denote by

a(K, β) = {x ∈ RN ;xi ≥ 0 for i ∈ Kc
β

+, xi < 0 for i ∈ Kc
β
−}.

Thus the set a(K, β) is the product of three terms: the closed quad-
rant in the variables in Kc

β
+, , the opposite of the open quadrant in the

variables in Kc
β
−, and a vector space in the variable in K.

If K ∈ B(Φ), the cone a(K, β)∩V (Φ, λ) is the translate by the vertex
sK(Φ, λ) of the semi-open cone a0(K, β) of dimension d. In particular
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a(K, β) ∩ V (Φ, λ) is contained in the half space sK(Φ, λ) + β ≥ 0 ∩
V (Φ, λ) of V (Φ, λ).

If λ ∈ τ and K ∈ B(Φ, τ), the cone a(K, β)∩ V (Φ, λ) is obtained by
reversing some of the generators of the tangent cone to the polytope
p(Φ, λ) at the vertex sK(Φ, λ) so that β takes positive values on them.
We say that it is the polarized tangent cone.

Recall the Lawrence-Varchenko polarized decomposition of p(Φ, λ),
(actually, we will give a proof below).

[p(Φ, λ)] =
∑

K∈B(Φ,τ)

(−1)|K
c
β
−|[a(K, β) ∩ V (Φ, λ)].

Again this equality is obtained by intersecting a number of fixed cones
in RN with the varying affine subspace V (Φ, λ). Therefore it is natural
to define the following function.

Definition 24. The Combinatorial Lawrence-Varchenko function is
the following element of W :

Y (Φ, τ, β) =
∑

K∈B(Φ,τ)

(−1)|K
c
β
−|
∏

i∈Kc
β

+

pi
∏

i∈Kc
β
−

qi
∏
i∈K

(pi + qi). (17)

If the tope τ is not contained in c(Φ), then Y (Φ, τ, β) = 0. Otherwise,
if τ ⊂ c(Φ), the sum defining Y (Φ, τ, β) is indexed by all the vertices
of the polytope p(Φ, λ0) (for any choice of λ0 ∈ τ).

If we replace pi by the characteristic function of xi ≥ 0 and qi by
the characteristic function of xi < 0 (pi + qi = 1), we obtain a function
Ygeom(Φ, τ, β) on RN .

By construction, if λ ∈ τ , the product [V (Φ, λ)]Ygeom(Φ, τ, β) is the
signed sum of polarized semi-closed cones at the vertices of the (sim-
ple) partition polytope p(Φ, λ). Lawrence-Varchenko’s theorem can be
restated as [V (Φ, λ)]Ygeom(Φ, τ, β) = [p(Φ, λ)] while Brianchon-Gram’s
theorem is [V (Φ, λ)]Xgeom(Φ, τ) = [p(Φ, λ)] for any λ ∈ τ .

The Lawrence-Varchenko decomposition of a simple polytope can be
derived from the Brianchon-Gram one, by grouping some faces with a
common vertex, [15]. It is remarkable that their combinatorial precur-
sors actually coincide as elements of the space W , as we show in the
next theorem.

Theorem 25. Let Φ = (φj)1≤j≤N be a sequence of non zero elements
of a vector space F , generating F, and spanning a salient cone, and let
τ ⊂ c(Φ) be a Φ-tope. Let X(Φ, τ) be the Combinatorial Brianchon-
Gram function. For any linear form β which is regular with respect to
Φ, let Y (Φ, τ, β) be the Combinatorial Lawrence-Varchenko function.
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Then
Y (Φ, τ, β) = X(Φ, τ).

Proof. In the sum X(Φ, τ), for a given K ∈ B(Φ, τ), we group together
the I ∈ G(Φ, τ) such that K ⊆ I and 〈β, ρΦ,Kei〉 < 0, for every i ∈
I \K. We denote the set of these I by G(Φ, τ)Kβ .

Lemma 26. Let I ∈ G(Φ, τ) and K ∈ B(Φ, τ) such that K ⊆ I .
Then I ∈ G(Φ, τ)Kβ if and only if for any λ ∈ τ , on the face fI(Φ, λ) of
p(Φ, λ) which is indexed by I, the linear form β reaches its maximum
at the vertex sK indexed by K.

Proof. Let λ ∈ τ . Let x =
∑

i∈I xiei ∈ fI(Φ, λ), with x 6= sK . Then
x− sK is the projection ρΦ,K(x) =

∑
i∈I\K xiρΦ,K(ei). Hence

〈β, x− sK〉 =
∑
i∈I\K

xi〈β, ρΦ,K(ei)〉.

Assume that 〈β, ρΦ,Kei〉 < 0, for every i ∈ I \K. As xi ≥ 0 and xi > 0
for at least one index i ∈ I \K, we have 〈β, x− sK〉 < 0.

Conversely, let i ∈ I \K. Take an x =
∑

k∈K xkek + xiei ∈ fI(Φ, λ)
with xi > 0. Then by assumption we have 〈β, x− sK〉 < 0, hence
xi〈β, ρΦ,Kei〉 < 0. �

It follows that, when K runs over B(Φ, τ) (the set of vertices of
p(Φ, λ)), the subsets G(Φ, τ)Kβ form a partition of G(Φ, τ) (the set of
faces). Therefore, in order to prove Theorem 25, there remains to show
that for every K ∈ B(Φ, τ), we have∑

I∈G(Φ,τ)Kβ

(−1)|I|−dimF
∏
i∈Ic

pi
∏
i∈I

(pi + qi) =

(−1)|K
c
β
−|
∏

i∈Kc
β

+

pi
∏

i∈Kc
β
−

qi
∏
i∈K

(pi + qi). (18)

We factor out
∏

i∈K(pi + qi). We need to prove∑
I∈G(Φ,τ)Kβ

(−1)|I|−dimF
∏
i∈Ic

pi
∏
i∈I\K

(pi + qi) =

(−1)|K
c
β
−|
∏

i∈Kc
β

+

pi
∏

i∈Kc
β
−

qi. (19)

We make several observations. First, G(Φ, τ)Kβ is precisely the set of

I ⊆ {1, . . . , N} such that K ⊆ I and I \K ⊆ Kc
β
−. Moreover, for each

I ∈ G(Φ, τ)Kβ , the set of indices Ic
⊔

(I \K) is exactly the complement



28 N. BERLINE AND M. VERGNE

Kc and |I| − dimF = |I \K|, as dimF = |K|. Let B ⊆ Kc. A given
monomial

∏
i∈Kc\B pi

∏
i∈B qi appears on the left hand side of (19) with

coefficient ∑
{I∈G(Φ,τ)Kβ , B⊆I\K}

(−1)|I\K|.

By the usual inclusion-exclusion relations applied to the subsets I\K of

Kc, this sum is equal to (−1)|K
c
β
−| if B = Kc

β
− and to 0 otherwise. �

Example 27. In Example 13 of the standard knapsack with N = 3, we
take 〈β, x〉 = x1+ x2

2
+ x3

3
. We obtain Y (Φ, τ, β) = (p1+q1)q2q3+p1(p2+

q2)p3 − p1q2(p3 + q3). It is indeed equal to X(Φ, τ) = p1p2p3 + q1q2q3.

Example 28. (continues Example 20). The subspace V is generated by
the vector e1+e2−e3. Hence, the projections ρ(Φ,K)(ei) are ρΦ,(1,2)(e3) =
e3 − e1 − e2, ρΦ,(1,3)(e2) = ρΦ,(2,3)(e1) = e1 + e2 − e3. We can take
〈β, x〉 = x1 + x2 + x3. Let τ1 be the cone generated by (φ1, φ3). We
obtain

Y (Φ, τ1, β) = −(p1 + q1)(p2 + q2)q3 + (p1 + q1)p2(p3 + q3) (20)

= p1p2p3 + p1q2p3 − q1p2q3 − q1q2q3. (21)

Comparing with Example 20, we check that Y (Φ, τ1, β) = X(Φ, τ1).

Corollary 29. For any λ ∈ F , X (Φ, τ)[V (Φ, λ)] is as a signed sum of
bounded polytopes.

Proof. Choose any β regular, then the function X (Φ, τ)[V (Φ, λ)] is
equal to Ygeom(Φ, τ, β)[V (Φ, λ)]. Taking m(β) to be the minimum of
the values 〈β, sK(Φ, λ)〉 over the K ∈ B(Φ, λ), we see that the sup-
port of the function X (Φ, τ)[V (Φ, λ)] is contained in the half space
{〈β, x〉 ≥ m(β)} of V (Φ, λ). As this equality holds for any regu-
lar linear form β, this implies that the support of X (Φ, τ)[V (Φ, λ)]
is bounded. �

3. Wall-crossing

3.1. Combinatorial wall-crossing. In this section we prove the main
theorem of this article: a formula for X(Φ, τ2)−X(Φ, τ1), when τ1 and
τ2 are adjacent topes.

The computation comes out nicely when we use the polarized ex-
pression Y (Φ, τ, β) as a sum over B(Φ, τ) (Theorem 25), because it is
easy to analyze how B(Φ, τ) changes as we cross the wall H between
the two topes.

We recall that two topes τ1 and τ2 are called adjacent if the inter-
section of their closures spans a wall H. We denote by Φ ∩ H the
subsequence of Φ formed by the elements φi belonging to H.
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Lemma 30. Let τ1 and τ2 be adjacent Φ-topes such that τ1 ⊂ c(Φ).
Let K ∈ B(Φ, τ1) such that K /∈ B(Φ, τ2).
(i) For all k ∈ K but one, say k1, we have φk ∈ H. The vector φk1 is
in the open side of H which contains τ1.
(ii) Let τ12 be the unique tope of Φ∩H such that τ1∩τ2 ⊂ τ12. Then τ12

is contained in the cone generated by the vectors φk for k ∈ K, k 6= k1.

Proof. Up to renumbering, we can assume that K = {1, . . . , r}. Let
x1, . . . , xr be the coordinates on F relative to this basic subset. If
K /∈ B(Φ, τ2), at least one of these coordinates, say x1, is < 0 on
τ2. Then the wall H must be the hyperplane {x1 = 0}. (i) follows
immediately.

The proof of (ii) is also easy.
�

Recall Definition 16 of flipped systems ΦA
flip.

Lemma 31. Let τ1 and τ2 be adjacent Φ-topes such that τ1 ⊂ c(Φ).
Let H be their common wall. Let A be the set of i ∈ {1, . . . , N} such
that φi belongs to the open side of H which contains τ1, (hence −φi
belongs to the side of τ2). Then B(ΦA

flip, τ2) is equal to the symmetric
difference B(Φ, τ1) M B(Φ, τ2). More precisely

K ∈ B(Φ, τ1), K /∈ B(Φ, τ2)⇔ K ∈ B(ΦA
flip, τ2), K ∩ A 6= ∅,

K ∈ B(Φ, τ2), K /∈ B(Φ, τ1)⇔ K ∈ B(ΦA
flip, τ2), K ∩ A = ∅.

Moreover, the cone c(ΦA
flip) is salient , and τ2 is contained in at least

one of the cones c(Φ) or c(ΦA
flip).

Proof. It follows easily from Lemma 30 (i) and the definition of ΦA
flip.
�

It will be convenient to have a notation.

Definition 32. Let τ1, τ2 be adjacent Φ-topes. We denote by A(Φ, τ1, τ2)
the set of i ∈ {1, . . . , N} such that φi belongs to the open side of the
common wall which contains τ1 .

Theorem 33. Let Φ = (φj)1≤j≤N be a sequence of non zero elements of
a vector space F , generating F, and spanning a salient cone. Let τ1 and
τ2 be adjacent Φ-topes such that τ1 ⊂ c(Φ). Let H be their common wall.
Let A be the set of i ∈ {1, . . . , N} such that φi is in the open side of H
which contains τ1. Let ΦA

flip be the sequence σAi φi, where σAi = −1 if i ∈
A and σAi = 1 if i /∈ A. Let X(Φ, τ1), X(Φ, τ2) and X(ΦA

flip, τ2) be the
corresponding Combinatorial Brianchon-Gram polynomials ∈ Z[pi, qi].



30 N. BERLINE AND M. VERGNE

Let FlipA be the ring homomorphism from Z[pi, qi] to itself defined by
exchanging pi and qi for i ∈ A. Then we have the wall-crossing formula

X(Φ, τ1) = X(Φ, τ2)− (−1)|A| FlipAX(ΦA
flip, τ2). (22)

Remark 34. If the tope τ2 is not contained in c(Φ), (res c(ΦA
flip)),

then G(Φ, τ2), (resp. G(ΦA
flip, τ2)), is empty, hence X(Φ, τ2) = 0, (resp

X(ΦA
flip, τ2) = 0).

Remark 35. By Remark 10, the actual jumps occur only on walls
between chambers. This in agreement with this formula: indeed if H is
not a wall between chambers, the tope τ12 is not contained in c(Φ∩H)
and τ2 is not contained in c(ΦA

flip).

Remark 36. The theorem is trivially true if τ1 * c(Φ). Indeed, in this
case, we have X(φ, τ1) = 0, and A(Φ, τ1, τ2) = ∅, so that the right hand
side of (22) is X(φ, τ2)−X(φ, τ2) = 0.

Proof of Theorem 33. Let β be a linear form on RN which is regular
for Φ. Let βA be the linear form defined by

〈βA, ei〉 = σAi 〈β, ei〉

where σAi = −1 if i ∈ A and σAi = 1 if i ∈ Ac. We have, for every i,

〈βA, ρΦAflip,K
ei〉 = σAi 〈β, ρΦ,Kei〉. (23)

It follows, in particular, that βA is regular for ΦA
flip.

First we will prove the following relation between the polarized sums

Y (Φ, τ2, β)− Y (Φ, τ1, β) = (−1)|A| FlipA Y (ΦA
flip, τ2, β

A). (24)

Then we obtain (22) by applying Theorem 2.2. We write

Y (Φ, τ2, β)− Y (Φ, τ1, β) =∑
K∈B(Φ,τ2)

(−1)|K
c
β
−|
∏

i∈Kc
β

+

pi
∏

i∈Kc
β
−

qi
∏
i∈K

(pi + qi)

−
∑

K∈B(Φ,τ1)

(−1)|K
c
β
−|
∏

i∈Kc
β

+

pi
∏

i∈Kc
β
−

qi
∏
i∈K

(pi + qi) (25)

The terms for which K ∈ B(Φ, τ1) ∩ B(Φ, τ2) cancel out. For the
other terms, we apply Lemma 31. Take a K in B(Φ, τ1) M B(Φ, τ2) =
B(ΦA

flip, τ2). Using (23), we check easily that the unique K-term in
Y (Φ, τ2, β)− Y (Φ, τ1, β) is equal to the K-term in
(−1)|A| FlipA Y (ΦA

flip, τ2, β
A). �
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Example 37. N = 4 and Φ = (φ1, φ2, φ3 = 1
2
(φ2 − φ1), φ4 = 1

2
(φ1 +

φ2)). The tope τ1 is the open cone generated by φ2 and φ4. The adjacent
tope τ2 is the open cone generated by φ4 and φ1, see Fig. 8. Then φ2

and φ3 lie on the τ1-side of the common wall, so that A = {2, 3} and
ΦA

flip = (φ1,−φ2,−φ3, φ4). We obtain

X(Φ, τ1) = p1p2p3p4 − p1q2q3p4 − q1p2p3q4 + q1q2q3q4,

X(Φ, τ2) = p1p2p3p4 + p1q2q3q4 + q1p2p3p4 + q1q2q3q4,

X(ΦA
flip, τ2) = p1p2p3p4 + p1p2p3q4 + q1q2q3p4 + q1q2q3q4,

FlipAX(ΦA
flip, τ2) = p1q2q3p4 + p1q2q3q4 + q1p2p3p4 + q1p2p3q4,

= X(Φ, τ2)−X(Φ, τ1).

Figure 8. Topes τ1,τ2 for Φ = (φ1, φ2, φ3 = 1
2
(φ2 −

φ1), φ4 = 1
2
(φ1 + φ2)).

Later, in order to give a formula for the decomposition of X (Φ, τ) in
quadrants, we will need to iterate the wall-crossing through a sequence
of consecutively adjacent topes. To help understand what we obtain,
let us first cross two consecutive walls.

Corollary 38. Let τ1, τ2, τ3 be pairwise different Φ-topes such that τ2

is adjacent to τ1 and to τ3. Let A1 = A(Φ, τ1, τ2), A2 = A(Φ, τ2, τ3)
and let A1,2 be the symmetric difference A1 M A(ΦA1

flip, τ2, τ3). Then the

three cones c(ΦA1
flip), c(ΦA2

flip) and c(Φ
A1,2

flip ) are salient .
We have

X(Φ, τ1) = X(Φ, τ3)− (−1)|A1| FlipA1
X(ΦA1

flip, τ3)

− (−1)|A2| FlipA2
X(ΦA2

flip, τ3) + (−1)|A1,2| FlipA1,2
X(Φ

A1,2

flip , τ3). (26)
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Proof. We apply the wall-crossing theorem to (Φ, τ1, τ2). We obtain

X(Φ, τ1) = X(Φ, τ2)− (−1)|A1| FlipA1
X(ΦA1

flip, τ2).

In the right hand side, we transform each term by crossing the wall
from τ2 into τ3. First,

X(Φ, τ2) = X(Φ, τ3)− (−1)|A2| FlipA2
X(ΦA2

flip, τ3).

In order to apply the wall-crossing to (ΦA1
flip, τ2, τ3), we observe that the

sign rule implies

(ΦA1
flip)A(Φ

A1
flip,τ2,τ3) = Φ

A1MA(Φ
A1
flip,τ2,τ3)

flip ,

FlipA1
◦Flip

A(Φ
A1
flip,τ2,τ3)

= Flip
A1MA(Φ

A1
flip,τ2,τ3)

.

Moreover, (−1)|A1|(−1)A(Φ
A1
flip,τ2,τ3) = (−1)A1MA(Φ

A1
flip,τ2,τ3). Hence we ob-

tain

− (−1)|A1| FlipA1
X(ΦA1

flip, τ2) =

− (−1)|A1| FlipA1
X(ΦA1

flip, τ3) + (−1)|A1,2| FlipA1,2
X(Φ

A1,2

flip , τ3).

This proves (26). The cones are salient by the very definition of the

flipped systems ΦAi
flip and (ΦA1

flip)A(Φ
A1
flip,τ2,τ3). �

We now cross a number of walls to go from a tope τ to another tope
ν. A signed subset of {1, 2, . . . , N} is a list [ε, I] where I is a subset of
{1, 2, . . . , N} and ε = ±1 a sign.

Definition 39. Let τ and ν be two topes, and let us choose a sequence
τk, k = 1, . . . , ` of topes such that τk+1 is adjacent to τk for every
1 ≤ k ≤ `− 1, and τ1 = τ, τ` = ν.

For every sequence K = (1 ≤ k1 < · · · < ks ≤ ` − 1), let AK ⊆
{1, . . . , N} be the subset defined recursively as follows. If s = 0, that
is K = ∅, then A∅ = ∅. If K = (k1, k2, . . . , ks) with s ≥ 1, let A =
A(k1,...,ks−1), then

AK = A M A(ΦA
flip, τks , τks+1).

We define the list A(ν, τ) to be the list of signed subsets [(−1)|K|, AK ]
of {1, 2, . . . , N} so obtained.

Remark 40. The list A(ν, τ) depends of the choice of path of adjacent
topes from τ to ν , but we do not indicate this in the notation.

We obtain the following result, if there are `− 1 wall crossings to go
from τ to ν.



PARAMETRIC POLYTOPES 33

Corollary 41. Let ν be a tope. Then for every [ε, A] ∈ A(ν, τ), the
cone c(ΦA

flip) is salient. Furthermore, we have

X(Φ, τ) =
∑

[ε,A]∈A(ν,τ)

εFlipAX(ΦA
flip, ν).

Proof. The recursion rule means that, when we travel through the se-
quence of topes τi, i = 1, . . . , `, and apply Formula (22), we choose the
flipped term when we cross the wall between τki and τki+1, and the
unflipped term for the other walls. For instance, A{1} = A(Φ, τ1, τ2),

and A{1,2} = A{1} M A(Φ
A{1}
flip , τ2, τ3), in agreement with the two-step

wall-crossing formula. The general case is immediate by induction. �

3.2. Semi-closed partition polytopes. In order to state the geo-
metric consequences of the above combinatorial wall-crossing formu-
las, we introduce some semi-closed partition polytopes, to which the
Brianchon-Gram theorem extends naturally.

Definition 42.

p(Φ, A, λ) = {x ∈ V (Φ, λ), xi > 0 for i ∈ A, xi ≥ 0 for i ∈ Ac.}
When λ is regular, the closure of p(Φ, A, λ) is the partition polytope

p(Φ, λ).

Definition 43. For A ⊆ {1, . . . , N} we denote by GeomA the map
from W to the space of functions on RN defined by substituting 1− pi
for qi, then [xi ≥ 0] for pi if i /∈ A and [xi > 0] for pi if i ∈ A.

When A is the empty set, the substitution Geom∅ coincide with the
usual substitution Geom defined before. When we consider non empty
subsets A ⊆ {1, . . . , N}, we obtain an extension of the Brianchon-Gram
theorem to these semi-closed polytopes.

Proposition 44. Let A ⊆ {1, . . . , N}. For λ ∈ τ , we have

GeomAX(Φ, τ) [V (Φ, λ)] = [p(Φ, A, λ)]. (27)

Proof. When A = ∅, it is exactly the Brianchon-Gram theorem. We
proceed by induction on the cardinality of A. If A 6= ∅, we can assume
that N ∈ A, up to renumbering. Let A′ = A \ {N}.

We write [p(Φ, A, λ)] = [p(Φ, A′, λ)] + ([p(Φ, A, λ)]− [p(Φ, A′, λ)]).
We have

[p(Φ, A′, λ)]− [p(Φ, A, λ)] = [p(Φ, A′, λ)][xN = 0].

Let us show that we have

(GeomA′ X(Φ, τ)−GeomAX(Φ, τ))[V (Φ, λ)] = [p(Φ, A′, λ)][xN = 0].
(28)
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We first prove (28) in the case where A = {N}, hence A′ = ∅.
We observe that the right hand side of (28) is the characteristic

function of the face of p(Φ, λ) defined by xN = 0. If we identify the
hyperplane {xN = 0} with RN−1, this face is the partition polytope
p(Φ′, λ) corresponding to Φ′ = (φi), 1 ≤ i ≤ N − 1 and λ ∈ F .

We now look at the left hand side of (28). We see that

Geom∅X(Φ, τ)−Geom{N}X(Φ, τ) = ∑
I∈G(Φ,τ),

Ic3N

(−1)|I|−dimF
∏

i∈Ic,i 6=N

[xi ≥ 0]

 [xN = 0], (29)

because the terms indexed by the subsets I such that N /∈ Ic cancel
out in the difference.

If Φ′ does not generate Φ, we see that both sides of the equation
(28) are equal to 0. Indeed as λ is regular, it cannot be contained in
the smaller dimensional space generated by Φ′, and every generating
subset in G(Φ, τ) contains the index N .

Now assume that Φ′ generates F . The Φ-tope τ is contained in a
unique Φ′-tope τ ′. The set G(Φ′, τ ′) consists precisely of the subsets
I ′ ⊆ {1, . . . , N − 1} such that I ′ ∈ G(Φ, τ).

Therefore the right hand side of (29) is the Brianchon-Gram decom-
position of the facet p(Φ′, λ). Thus we have proved (28) in the case
where A = {N}.

The general case when A′ 6= ∅ is similar. We have now

GeomA′ X(Φ, τ)−GeomAX(Φ, τ) = ∑
I∈G(Φ,τ),

Ic3N

(−1)|I|−dimF
∏

i∈Ic∩A′
[xi > 0]

∏
i∈Ic∩A′c,
i 6=N

[xi ≥ 0]

 [xN = 0].

By the induction hypothesis, the right hand side of this equality is the
Brianchon-Gram decomposition of the semi-closed polytope
p(Φ′, A′, λ) = p(Φ, A′, λ) ∩ {xN = 0}. �

Remark 45. The formula is not necessarily true on the boundary of
τ , as shown by the trivial example Φ = (φ1), A = {1}, λ = 0.

It will be useful to rephrase Proposition 44 in the terms which arise
in the combinatorial wall-crossing Theorem 33.
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Definition 46. For A ⊆ {1, . . . , N} such that c(ΦA
flip) is salient and

λ ∈ F , let

pflip(Φ, A, λ) =

{x ∈ RN ;
∑
i

xiφi = λ, xi < 0 for i ∈ A, xi ≥ 0 for i /∈ A}. (30)

Proposition 47. Let A ⊆ {1, . . . , N} be such that the cone c(ΦA
flip) is

salient. Let τ be a Φ-tope. Then, for λ ∈ τ we have

Geom∅ FlipAX(ΦA
flip, τ)[V (Φ, λ)] = [pflip(Φ, A, λ)]. (31)

Proof. For any polynomial Z ∈ C[pi, qi], we have

Geom∅ FlipA(Z) = GeomA(Z) ◦ σA (32)

where σAx = (σAi xi) with σAi = −1 if i ∈ A and σAi = 1 if i /∈ A.
Moreover we have

[V (Φ, λ)] = [V (ΦA
flip, λ)] ◦ σA.

Thus

Geom∅ FlipAX(ΦA
flip, τ)[V (Φ, λ] =(

GeomAX(ΦA
flip, τ)[V (ΦA

flip, λ)]
)
◦ σA. (33)

We apply Proposition 44 to the sequence ΦA
flip and the ΦA

flip-tope τ . We
obtain that the right hand side of (33) is equal to

[p(ΦA
flip, A, λ] ◦ σA.

By definition of p(ΦA
flip, A, λ), this is precisely the characteristic function

of the set of x such that σAi xi = −xi > 0 for i ∈ A and σAi xi = xi ≥ 0
for i /∈ A, and σAx ∈ V (ΦA

flip, λ), i.e. x ∈ pflip(Φ, A, λ). �

3.3. Decomposition in quadrants. Recall that when τ and ν are
two topes, we have defined a list A(ν, τ) of signed subsets [ε, A] of
{1, 2, . . . , N}.

Theorem 48. Let z(Φ, τ, B), B ⊂ {1, . . . , N} be the collection of co-
efficients of the Combinatorial Brianchon-Gram polynomial associated
to the Φ-tope τ .

X(Φ, τ) =
∑
B

z(Φ, τ, B)
∏
i/∈B

pi
∏
i∈B

qi.

(i) If B = ∅, then z(Φ, τ, B) = 1 while if B = {1, 2, . . . , N}, then
z(Φ, τ, B) = (−1)d.
(ii) If z(Φ, τ, B) 6= 0, then the cone c(ΦB

flip) is salient .
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(iii) More precisely, if z(Φ, τ, B) is not equal to 0, choose x = (xi) ∈
QB

neg such that λ =
∑

i xiφi is a regular element in F and let ν be the
tope containing λ. Then B occurs in the list in A(ν, τ) and we have

z(Φ, τ, B) = (−1)|B|
∑

{[ε,B]∈A(ν,τ)}

ε. (34)

Proof. We already remarked (i).
For the choice of x as in (iii), the coefficient zB = z(Φ, τ, B) is

the value of GeomX(Φ, τ)[V (Φ, λ)] at such a point x. We now apply
Corollary 41 and Proposition 47 using the tope ν, where λ belongs.

We obtain that the value zB is the signed sum of the values of
pflip(Φ, A, λ) = [QA

neg] ∩ [V (Φ, λ)] at x. By definition, this value is
zero if the set of i with xi < 0 is different from B. Otherwise, is equal
to 1. �

Example 49. Let τ1 and τ2 be the adjacent topes and A = A(Φ, τ1, τ2).
If τ2 ⊂ c(ΦA

flip), then z(Φ, τ, A) = −(−1)|A|. An example of this situ-
ation is the standard knapsack, (Example 13), where there are exactly
two topes, R>0 and R<0. The theorem implies that the Brianchon-Gram
polynomial is p1 · · · pN − (−1)Nq1 · · · qN , as we found directly.

Example 50. If there is no subset K in the sum (34), or if there are
more than one, then the coefficient z(Φ, τ, B) may be 0 although the
cone c(ΦB

flip) is salient . Let us take Example 20. The direct compu-
tation gave X(Φ, τ1) = p1p2p3 − p1q2q3 + q1p2p3 − q1q2q3. We see that
there are no terms corresponding to B = {2} and B = {1, 3}. For

B = {2}, the tope τ2 =
◦
c (φ1,−φ2) is contained in c(φ1,−φ2, φ3), hence

we take the sequence (τ1, τ2). For K = (1) we have A(1) = {2, 3} 6= B,
so there is no K such that AK = B. For B = {1, 3}, we need

a sequence of three topes, (τ1, τ2, τ3) where now τ2 =
◦
c (φ2, φ3) and

τ3 =
◦
c (−φ1, φ2) ⊂ c(ΦB

flip). The K such that AK = {1, 3} are K = (2)
and K = (1, 2), which indeed lead to opposite signs in the sum (34).

3.4. Geometric wall-crossing. By ”intersecting” GeomX(Φ, τ) with
[V (Φ, λ)], we translate the results on X(Φ, τ) in geometric terms.

Corollary 51 (We keep the notations of Theorem 33). Let τ1 be a Φ-
tope. For λ in the adjacent tope τ2, we have the geometric wall-crossing
for.mula

X (Φ, τ1)[V (Φ, λ)] = [p(Φ, λ)]− (−1)|A|[pflip(Φ, A, λ)]. (35)

Proof. We apply the map Geom on both sides of the combinatorial wall-
crossing formula (22), then we multiply by the characteristic function
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[V (Φ, λ)]. We obtain, by definition,

X (Φ, τ1)[V (Φ, λ)] = [p(Φ, λ]− (−1)|A|Geom FlipAX(ΦA
flip, τ2)[V (Φ, λ)],

hence (35) by applying the semi-closed Brianchon-Gram formula, as
stated in Proposition 47, to the tope τ2. �

Corollary 52. For any λ ∈ F , the function

X (Φ, τ)[V (Φ, λ)] =
∑

{B,λ∈c(ΦBflip)}

z(Φ, τ, B)[pflip(Φ, B, λ)] (36)

is a linear combination with integral coefficients of semi-closed partition
polytopes.

3.5. An example. We return to Example 37, see Fig. 8, with Φ =
(φ1, φ2, φ3 = 1

2
(φ2 − φ1), φ4 = 1

2
(φ1 + φ2)). For λ = λ1φ1 + λ2φ2,

Figure 9. λ2 > λ1 > 0, (tope (φ2, φ4)), then λ2 = λ1 >
0, (wall (φ4)).

we parametrize the 2-dim subspace V (Φ, λ) ⊂ R4 by (y1, y2) 7→ (y1 +
λ1, y2 +λ2, y1−y2,−(y1 +y2)). We start with λ in the tope τ1 generated
by φ2 and φ4, i.e. λ2 > λ1 > 0. Then p(λ) corresponds under the
parameterization to the tetragon in Fig. 9, defined by the inequations

y1 + λ1 ≥ 0

y2 + λ2 ≥ 0

y1 − y2 ≥ 0

y1 + y2 ≤ 0

We describe its analytic continuation, as the parameter λ visits the
topes, one after the other. In the figures, the polytopes which are
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Figure 10. λ1 > λ2 > 0, (tope (φ4, φ1)), then λ1 >
0 = λ2, (wall (φ1)).

Figure 11. λ1 > −λ2 > 0, (tope (φ1,−φ3)), then λ1 =
−λ2 > 0, (wall (−φ3)).

counted positively are coloured in blue, those wich are counted neg-
atively are coloured in red. Semi-openness is indicated with dashed
lines. When λ moves to the right and reaches the wall generated by
φ4, the tetragon p(λ) transforms into a triangle (Fig. 9). When λ
enters the adjacent tope τ2 generated by (φ1, φ4), i.e. λ1 > λ2 > 0,
the wall-crossing polytope appears (Fig. 10). It is (with sign −1) the
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Figure 12. −λ2 > λ1 > 0, (tope (−φ3,−φ2)), then
−λ2 > 0 = λ1, (wall −φ2).

Figure 13. λ1 < λ2 < 0, (tope (−φ2,−φ4)). The
polygon is now the interior of the opposite of the initial
tetragon of Fig. 9, cf [20].

semi-closed triangle

y1 + λ1 ≥ 0

y2 + λ2 < 0

y1 − y2 < 0

y1 + y2 ≤ 0, (this condition is redundant).

Then λ moves downwards towards the wall generated by φ1. The posi-
tive closed triangle shrinks while the negative semi-closed one increases.
When λ reaches the wall, the closed triangle is reduced to a point (Fig.
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10). When λ enters the tope (φ1,−φ3), the negative semi-closed tri-
angle deforms into a negative semi-closed quadrileral (Fig. 11). When
λ reaches the wall generated by −φ3 (Fig. 12), then enters the tope
(−φ3,−φ2), a new positive open triangle appears. Then λ reaches the
wall generated by −φ2 (Fig. 12) and enters the tope (−φ2,−φ4) (Fig.
13). The analytic continuation is now a positive open tetragon opposite
to the (closed) initial one. (This case is pointed out in [20]).

4. Integrals and discrete sums over a partition polytope

As a consequence of the compacity result of Corollary 52, together
with the set theoretic relations of Corollary 21, we recover properties
of sums and integrals over partition polytopes which were previously
obtained in [9] and [19], [13],[12]. Moreover, the set-theoretic wall-
crossing formula has obvious implications for sums and integrals. In
particular, when applied to the number of points of a partition poly-
tope, it implies the wall-crossing formula of [18], Theorem 5.2. We will
explain in more details this last point in Subsection 4.3.

4.1. Generating functions of polyhedra and Brion’s theorem.
Let V be a real dimensional vector space. We choose a Lebesgue mea-
sure dv on V . Let us recall the notion of valuations and of generating
functions of cones (see the survey [3]).

Recall that a valuation F is a map from a set of polyhedra p ⊂ V
to a vector space M such that whenever the characteristic functions
[pi] of a family of polyhedra pi satisfy a linear relation

∑
i ri[pi] = 0,

then the elements F (pi) satisfy the same relation
∑

i riF (pi) = 0. Thus
any valuation defined on the set of all polyhedra can be extended to
the “analytic continuation”, which is a signed sum of polytopes. In
particular, the valuation defined on the set of polyhedra by the Euler
characteristic (see [3]) is identically equal to 1 on the “analytic con-
tinuation” as follows from Brianchon-Gram decomposition and Euler
relations.

We now study two other classical instances of valuations.
There exists a unique valuation p 7→ I(p) which associates to every

polyhedron p ⊆ V a meromorphic function I(p)(ξ) on V ∗, so that the
following properties hold:
(i) If p contains a straight line, then I(p) = 0.
(ii) If ξ ∈ V ∗ is such that e〈ξ,x〉 is integrable over p for the measure dv,
then

I(p)(ξ) =

∫
p

e〈ξ,x〉 dv.
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Moreover, for every point s ∈ V , one has

I(s+ p)(ξ) = e〈ξ,s〉I(p)(ξ).

I(p)(ξ) is called the continuous generating function of p.
Assume that V is equipped with a lattice VZ.
There exists a unique valuation p 7→ S(p) which associates to every

rational polyhedron p ⊆ V a meromorphic function S(p)(ξ) on V ∗, so
that
(i) if p contains a straight line, then S(p) = 0;
(ii) if ξ ∈ V ∗ is such that e〈ξ,x〉 is summable over the set of lattice points
of p, then

S(p)(ξ) =
∑

x∈ p∩VZ

e〈ξ,x〉.

Moreover, for every point s ∈ VZ, one has

S(s+ p)(ξ) = e〈ξ,s〉S(p)(ξ).

S(p)(ξ) is called the (discrete) generating function of p.
These valuations are easily constructed, either by algebraic meth-

ods (see [3]), or by introducing the Fourier transforms of discrete or
continuous measures associated to the polyhedron p (see Section 5).
Furthermore, there is an important property of the generating func-
tions S(p)(ξ) and I(p)(ξ). Introduce the space M`(V

∗) of meromor-
phic functions on V ∗ which can be written as the quotient of a func-
tion which is holomorphic near ξ = 0 by a product of linear forms.
The functions I(p)(ξ) and S(p)(ξ) belong to the space M`(V

∗). Then
a function f(ξ) ∈ M`(V

∗) has a unique expansion into homogeneous
rational functions

f(ξ) =
∑
m≥m0

f[m](ξ),

where the summands f[m](ξ) have degree m as we define now: if P is
a homogeneous polynomial on V ∗ of degree p, and D a product of r
linear forms, then P

D
is an element in M`(V

∗) homogeneous of degree
m = p− r.

Let p be a polytope with set of faces F(p), and affine tangent cones
taff(p, f) at f. We obtain from the Brianchon-Gram theorem:∫

p

e〈ξ,v〉dv =
∑
f

(−1)dim fI(taff(p, f))(ξ).

Furthermore, as the cone taff(p, f) contains a straight line, when the
dimension of f is strictly greater than 0, this gives the well-known
Brion’s formula:
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∫
p

e〈ξ,v〉dv =
∑
s

I(s+ cs)(ξ).

Here s runs through the vertices of p and cs is the tangent cone at s.
Similarly, when V is a rational vector space with lattice VZ, and p a

rational polytope, we have∑
x∈p∩VZ

e〈ξ,x〉 =
∑
s

S(s+ cs)(ξ). (37)

These formulae are at the heart of Varchenko’s “analytic continua-
tion procedure”: we see intuitively that if the vertices of a polytope
q(b) vary “analytically” with a parameter b, the integrals and discrete
sums will also vary ”analytically”. We will state precise results in the
next section.

4.2. Polynomiality and wall-crossing for integrals and sums.
Recall the following definition

Definition 53. If F is equipped with a lattice Λ, a quasi-polynomial
function f on Λ is a function such that there exists a sublattice Λ′ ⊂ Λ
so that, for any λ0 ∈ Λ, the function λ′ → f(λ0 + λ′) is given by the
restriction to Λ′ of a polynomial function fλ0 on F .

Theorem 54. Let Φ = (φj)1≤j≤N be a sequence of non zero elements
of a vector space F , generating F, and spanning a salient cone. Let
τ ⊂ F be a Φ-tope such that τ is contained in the cone c(Φ) generated
by Φ. For λ ∈ F , let V (Φ, λ) be the affine subspace of RN defined by∑N

i=1 xiφi = λ. Let

X (Φ, τ) =
∑

I∈G(Φ,τ)

(−1)|I|−dimF
∏
i∈Ic

[xi ≥ 0],

where G(Φ, τ) is the set of I ⊆ {1, . . . , N} such that {φi, i ∈ I} gener-
ates F and such that τ is contained in the cone generated by {φi, i ∈ I}.

Let h(x) be a polynomial function on RN . Fix a Lebesgue measure on
the subspace V and let dmΦ(x) be the corresponding Lebesgue measure
on V (Φ, λ). Define

I(Φ, τ, h)(λ) =

∫
V (Φ,λ)

X (Φ, τ)(x)h(x)dmΦ(x). (38)

In the case where F is a rational space with lattice Λ and that the φi
are lattice vectors, define

S(Φ, τ, h)(λ) =
∑

x∈V (Φ,λ)∩ZN
X (Φ, τ)(x)h(x). (39)
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Then
(i) λ 7→ I(Φ, τ, h)(λ) is a polynomial function on F .
(ii) λ 7→ S(Φ, τ, h)(λ) is a quasi-polynomial function on the lattice
Λ ⊂ F .
(iii) If λ belongs to the closure of the tope τ , we have

I(Φ, τ, h)(λ) =

∫
p(Φ,λ)

h(x)dmΦ(x). (40)

Let b(Φ) be the zonotope generated by Φ. If λ ∈ (τ − b(Φ)) ∩ Λ, we
have

S(Φ, τ, h)(λ) =
∑

x∈p(Φ,λ)∩ZN
h(x). (41)

(iv) Furthermore, we have the following wall-crossing formulas (with
the notations of Theorem 33). For λ ∈ τ2, we have

I(Φ, τ1, h)(λ) =

∫
p(Φ,λ)

h(x)dmΦ(x)− (−1)|A|
∫
pflip(Φ,A,λ)

h(x)dmΦ(x).

(42)

S(Φ, τ1, h)(λ) =
∑

x∈p(Φ,λ)∩ZN
h(x)− (−1)|A|

∑
x∈pflip(Φ,A,λ)∩ZN

h(x). (43)

Proof. (iii) follows immediately from Corollary 21 and (iv) from the
wall crossing formulas of Corollary 51, together with Corollary 21.

The proof of the polynomiality in (i) and (ii) relies on the properties
of generating functions, as we explain in [2] for the weighted Ehrhart
theory.

To begin with, observe that it is enough to prove the theorem in the
case where the weight h(x) is a power of a linear form

h(x) =
〈ξ, x〉M

M !
,

for ξ ∈ (RN)∗. This is the term of ξ-degree M of the exponential e〈ξ,x〉.
Thus, we consider the functions of ξ ∈ (RN)∗

I(Φ, τ)(ξ, λ) =

∫
V (Φ,λ)

X (Φ, τ)(x)e〈ξ,x〉dmΦ(x). (44)

S(Φ, τ)(ξ, λ) =
∑

x∈V (Φ,λ)∩ZN
X (Φ, τ)(x)e〈ξ,x〉. (45)

As X (Φ, τ)(x)[V (Φ, λ)](x) has bounded support by Corollary 29, (44)
and (45) are holomorphic functions of ξ. We recover I(Φ, τ, h)(λ) and
S(Φ, τ, h)(λ) by taking their term of ξ-degree M .
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However the dependance on λ can be analyzed by looking at each
summand in

X (Φ, τ) ∩ [V (Φ, λ)] =
∑

K∈G(Φ,τ)

(−1)|K|−dimF [tK(Φ, λ)]. (46)

Indeed, it is immediate to extend the valuation I(p) defined in the
preceding section to a valuation I(p, λ) defined on polyhedrons con-
tained in the affine space V (Φ, λ).

Namely, there exists a unique valuation I(p, λ) associating to every
polyhedron p ⊆ V (Φ, λ) a meromorphic function I(p, λ)(ξ) on CN , so
that the following properties hold:
(i) If p contains a straight line, then I(p, λ) = 0.
(ii) If ξ ∈ CN is such that e〈ξ,x〉 is integrable over p for the measure
dmΦ, then

I(p, λ)(ξ) =

∫
p

e〈ξ,x〉 dmΦ(x).

Moreover, for every point s ∈ RN , one has

I(s+ p, λ+
N∑
i=1

siφi)(ξ) = e〈ξ,s〉I(p, λ)(ξ).

Similarly, if F is a space with a lattice Λ, and the elements φi belongs
to Λ, then, for λ ∈ Λ, there exists a unique valuation p 7→ S(p, λ)
associating to any λ ∈ Λ and every rational polyhedron p ⊆ V (Φ, λ) a
meromorphic function S(p, λ)(ξ) on CN , so that
(i) if p contains a straight line, then S(p, λ) = 0;
(ii) if ξ ∈ CN is such that e〈ξ,x〉 is summable over the set p ∩ ZN , then

S(p, λ)(ξ) =
∑

x∈ p∩ZN
e〈ξ,x〉.

Moreover, for every point s ∈ ZN , one has

S(s+ p, λ+
∑
i

siφi)(ξ) = e〈ξ,s〉S(p, λ)(ξ).

Look at Equation (46). The polyhedron tK(Φ, λ) contains a straight
line as soon if K ∈ G(Φ, τ) is not a basic subset. Thus, in terms of the
valuations I(p, λ), S(p, λ), we have

I(Φ, τ)(ξ, λ) =
∑

K∈B(Φ,τ)

I(tK(Φ, λ), λ)(ξ),

and
S(Φ, τ)(ξ, λ) =

∑
K∈B(Φ,τ)

S(tK(Φ, λ), λ)(ξ).



PARAMETRIC POLYTOPES 45

Each of these equations expresses a holomorphic function as a sum of
meromorphic ones whose poles cancel out. Furthermore, we can recover
the term of ξ-degree M by taking the homogeneous de degree in ξ in
each of these functions of ξ.

Regarding the dependance on λ, we have already observed the fol-
lowing crucial fact: the cone tK(Φ, λ) is the shift sK(Φ, λ) + a0(K) of
the fixed cone a0(K) by the vertex sK(Φ, λ) depending linearly of λ.

Let us first study the integral. Using the translation property of the
valuation I(p, λ), we can express I(p, λ) in function of the valuation
I(p) defined on polyhedrons contained in the fixed space V . We then
have

I(tK(Φ, λ), λ)(ξ) = e〈ξ,sK(Φ,λ)〉I(a0(K))(ξ).

Only the first factor e〈ξ,sK(Φ,λ)〉 depends on λ. Actually, it is easy to
see that I(a0(K))(ξ) is homogeneous of degree −d. Hence, the term of
ξ-degree M of I(tK(Φ, λ), λ)(ξ) is given by

I(tK(Φ, λ), λ)(ξ)[M ] =
〈ξ, sK(Φ, λ)〉M+d

(M + d)!
I(a0(K))(ξ)[−d].

Thus we have, for h(x) = 〈ξ,x〉M
M !

,

I(Φ, τ, h)(λ) =
∑

K∈B(Φ,τ)

〈ξ, sK(Φ, λ)〉M+d

(M + d)!
I(a0(K))(ξ)[−d].

The right hand side of this formula is a polynomial function of λ of
degree M + d, with coefficients which are polynomial functions of ξ
of degree M , (although each K summand has poles). Thus we have
proved (i).

Let us now study the discrete sum

S(Φ, τ)(ξ, λ) =
∑

K∈B(Φ,τ)

S(tK(Φ, λ), λ)(ξ).

Consider a sublattice Λ′ of Λ such that all elements sK(Φ, λ′) have
integral coefficients for λ′ ∈ Λ′ and all K ∈ B(Φ, τ). If D is the least
common multiple of all determinants of the Φ-basic subsets I in B(Φ),
we can choose Λ′ = DΛ.

Thus, if λ = λ0 + λ′, with λ0 ∈ Λ,λ′ ∈ Λ′, we obtain

S(tK(Φ, λ0 + λ′), λ0 + λ′)(ξ) = e〈ξ,sK(Φ,λ′)〉S(tK(Φ, λ0), λ0)(ξ).

Indeed tK(Φ, λ0 + λ′) = sK(Φ, λ′) + tK(Φ, λ0).
Here again the dependance in λ′ is only through the factor e〈ξ,sK(Φ,λ′)〉

and sK(Φ, λ′) depends linearly on λ′.
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If fλ0(K, ξ) = S(tK(Φ, λ0), λ0)(ξ) , a meromorphic function of ξ of
degree greater or equal to −d, we obtain:

S(tK(Φ, λ0 + λ′), λ0 + λ′)(ξ)[M ] =
M+d∑
k=0

〈ξ, sK(Φ, λ′)〉k

k!
fλ0(K, ξ)[M−k].

This is a polynomial function of λ′ of degree M + d.
Adding up the contributions, we see that we obtain that

λ′ → S(Φ, τ)(ξ, λ0 + λ′)

is a polynomial function of λ′ and ξ.
�

Remark 55. Consider Equation (36):

X (Φ, τ)[V (Φ, λ)] =
∑

{B,λ∈c(ΦBflip)}

z(Φ, τ, B)[QB
neg][V (Φ, λ)]. (47)

Consider the case where the elements φi are in a lattice Λ of F .
Summing up the function h = 1 over V (Φ, λ) ∩ ZN on both sides, we
obtain an expression for the quasi polynomial function S(Φ, τ, h)(λ)
in function of the partition functions associated to the flipped systems
ΦB

flip.
The functions S(Φ, τ, h)(λ) are elements of the Dahmen-Micchelli

space associated to Φ and Λ. It was proved in [13] that any Dahmen-
Micchelli quasi polynomial can be expressed as a linear combination
of partition functions associated to flipped systems ΦB

flip. The equation
(47) can be considered as a “set-theoretic” generalization of this theo-
rem.

4.3. Paradan’s convolution wall-crossing formulas. We assume
that F is equipped with a lattice Λ.

The convolution of two functions f1, f2 (satisfying adequate support
conditions) on Λ is defined by

(f1 ∗ f2)(µ) =
∑

λ1+λ2=µ

f1(λ1)f2(λ2).

If µ ∈ Λ, we write δµ for the function on Λ such that f(λ) = δλµ.

Let h be a polynomial function on RN , and consider

E(Φ, h)(λ) =
∑

x∈p(Φ,λ)

h(x).
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When h is the constant function 1, then

k(Φ)(λ) = E(Φ, 1)(λ) = Card(p(Φ, λ) ∩ ZN)

is the partition function associated to the sequence Φ. The function
k(Φ)(λ) is the convolution product fφ1 ∗ · · · ∗ fφN , where, for φ ∈ F ,

fφ :=
∞∑
n=0

δnφ.

Indeed, by definition k(Φ)(λ) is the number of solutions in integers
ni ≥ 0 of the equation

∑
i niφi = λ.

The case of a polynomial function h can be treated similarly. Assume
h is a product h(x1, x2, . . . , xN) =

∏N
i=1 hi(xi) where hi are polynomial

functions on R. For h a polynomial function on R, and φ a non zero
element in Λ, introduce

fhΦ =
∞∑
n=0

h(n)δnφ.

Then we see that

E(Φ, h) = fh1
φ1
∗ · · · ∗ fhNφN .

With the notations of Theorem 54, for each tope τ , the function S(Φ, τ, h)(λ)
is a quasi-polynomial function on the lattice Λ such that E(Φ, h)(λ) =
S(Φ, h, τ)(λ) for λ ∈ (τ − b(Φ)) ∩ Λ.

Let τ1, τ2 be two adjacent topes separated by a wall H. Let τ12 be
the unique tope of Φ ∩ H such that τ1 ∩ τ2 ⊂ τ12. Paradan’s formula
is a formula for S(Φ, h, τ1)− S(Φ, h, τ2) when τ1, τ2 are adjacent topes
in terms of the convolution of the quasi-polynomial function S(Φ ∩
H, h, τ1,2) on Λ ∩H with some the functions fhΦ.

Before stating the formula, we note one property of the function
S(Φ, h, τ).

Assume that H is a face of the cone c(Φ) and that τ is a tope with
one of its wall equal to H. Let τH be the unique tope of Φ∩H so that
τ ∩H is contained in τH . Let S(Φ∩H, h, τH) be the quasi-polynomial
function on Λ ∩H associated to this data.

Let us denote the subsequence of elements φi not in H by Φ \H =
(φ1, . . . , φM). Then if n1, n2, . . . , nM are non negative integers, and

λ ∈ Λ, there are only a finite number of ni such that λ −
∑M

i=1 niφi
belongs to H, as the elements φi are all on one side of H.

Let H≥0 be the closed half space delimited by H and containing τ .
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Proposition 56. For λ ∈ H≥0, S(Φ, h, τ)(λ) is equal to∑
ni≥0,λ−

∑
i niφi∈H

(h1(n1) · · ·hM(nM))S(Φ ∩H, h, τH)(λ−
M∑
i=1

niφi).

In other words, on H≥0 ∩ Λ,

S(Φ, h, τ) = S(Φ ∩H, h, τH) ∗ fh1
φ1
∗ · · · ∗ fhMφM .

Proof. As follows from [5], the right hand side, being the convolution
of a quasi-polynomial function on the lattice Λ ∩ H with products
fh1
φ1
∗· · ·∗fhMφM , coincides with a quasi-polynomial function on the domain

H≥0 ∩ Λ.
Now, to prove that the left hand side coincide with the right hand

side, we will use the fact that two quasi-polynomial functions agreeing
on c ∩ Λ, where c is a cone with non empty interior, coincide on Λ.

If λ ∈ τ is sufficiently near a point of τ ∩ H, then the set (λ −∑M
i=1 R≥0φi) ∩ H is contained in τH . We see that the set c := {λ ∈

τ ; (λ −
∑M

i=1 R≥0φi) ∩ H ⊂ τH} is an open cone in τ . On c ∩ Λ,
the function S(Φ, h, τ) coincide with E(Φ, h). On the other hand, if
we compute E(Φ, h) and E(Φ ∩ H, h) by their respective convolution
formulae, we obtain that the right hand side coincide also with E(Φ, h)
for λ ∈ c ∩ Λ. This establishes the proposition. �

Let X (Φ, A, τ2) = Geom(FlipAX(ΦA
flip, τ2)) and let

S(Φ, A, h, τ2)(λ) =
∑

x∈V (Φ,λ)∩ZN
X (Φ, A, τ2)(x).

We then obtain

S(Φ, h, τ1)− S(Φ, h, τ2) = S(Φ, A, h, τ2).

Remark that the tope τ2 for the flipped system ΦA
flip is such that

τ 2∩H is on the boundary of the cone ΦA
flip. Using a slight modification

of Proposition 56 above, we then can give the following “convolution
description” of the function S(Φ, A, h, τ2).

Let I+ := {a1, a2, . . . , ap} be the set of indices i such that φi is on
the open half space delimited by H containing τ2; similarly let I− :=
{b1, b2, . . . , bp} be the set of indices j such that φj is on the open half
space delimited by H containing τ1; then the sequence

[φa1 , . . . , φap ,−φb1 , . . . ,−φbq ]
is contained in the open half space delimited by H and containing τ2.
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Define

Flip fhφ = −
∞∑
n=1

h(−n)δ−nφ.

Then we have

Proposition 57. The quasi-polynomial function S(Φ, A, h, τ2) is given
by the convolution formula:

S(Φ, A, h, τ2) =

S(Φ ∩H, h, τ1,2) ∗

(∏
a∈A

Flip fhaφa ∗
∏
b∈B

fhbφb −
∏
b∈B

Flip fhbφb ∗
∏
a∈A

fhaφa

)
.

This is the convolution formula given by Paradan [18] for the jump.
It expresses the jump in terms of sums of the function S(Φ∩H, h, τ1,2)
associated to a lower dimensional system (see also [5]).

5. A refinement of Brion’s theorem

Let p ⊂ V be a full-dimensional polytope in a vector space V pro-
vided with a lattice VZ. Recall Brion’s Formula (8) for the generating
function of a polytope.

S(p)(ξ) =
∑
s∈V(p)

S(s+ cs)(ξ).

As p is compact, the function ξ ∈ V ∗ 7→ S(p)(ξ) is holomorphic, but the
contribution of each cone is a meromorphic function with singularities
along hyperplanes. More precisely, an element ξ ∈ V ∗ is singular for
S(s+ cs) if and only if ξ is constant on some face f of p such that s is
a vertex of f and dim f > 0.

It is well known that Brion’s formula is the combinatorial transla-
tion of the localization formula in equivariant cohomology, in the case
of isolated fixed points. In this section, we generalize (8) to the combi-
natorial case which corresponds to non isolated fixed points [4]. In this
degenerate case, the connected components of the set of fixed points
correspond to the faces of p on which ξ is constant which are maximal
with respect to this property. The contribution of such a face to the
sum S(p)(ξ) is ∑

s∈V(f)

S(s+ cs)(ξ).

We will study this sum by relating it to a Brianchon-Gram continuation
of the face f. We will assume that the polytope p is simple. The general
case needs more efforts.
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We need to introduce some meromorphic functions similar to the
function S(s + c)(ξ). Let q = s + c be a polyhedral cone in V , where
c is a cone generated by elements gj ∈ VZ . Let P be a quasi poly-
nomial function on VZ. The following sum

∑
x∈VZ∩q P (ξ)e〈ξ,x〉 defines a

generalized function F of the variable ξ ∈ iV ∗.
It is easy to see that

∏
i(1− e〈ξ,gj〉)F (ξ) is an analytic function of ξ.

Thus, outside the affine hyperplanes in iV ∗ defined by 〈ξ, gj〉 ∈ 2iπZ,
the generalized function F (ξ) is equal to S(q, P )(ξ), where S(q, P )(ξ) is
a meromorphic function of ξ with poles on 〈gj, ξ〉 ∈ 2iπZ. In particular
this function belongs to the spaceM`(V

∗) introduced before. We write

S(q, P )(ξ) =
∑

x∈VZ∩q

P (ξ)e〈ξ,x〉

and depending on the context, we consider S(q, P ) either as a general-
ized function of ξ ∈ iV ∗ or as a meromorphic function of ξ ∈ VC. If q is
a cone invariant by translation by a vector v ∈ VZ , it is easy that the
generalized function S(q, P )(ξ) is annihilated by a power of (1− e〈v,ξ〉).
The simplest case is when P = 1, V = c = R, VZ = Z, so that the
equality is simply (1 − eiθ)

∑
n∈Z e

inθ = 0. In particular, if q is a flat
cone, the meromorphic function S(q, P )(ξ) is equal to 0.

If f is a face of p, we denote by aff(f) the affine space generated by f
and by lin f the linear space parallel to aff(f), that is the space spanned
by elements x− y with x, y ∈ f. The projection ttrans(p, f) of taff(p, f) in
V/ lin f is called the transverse cone. Note that this transverse cone is
a salient cone in V/ lin f with vertex y0 the projection of any y ∈ f.

Theorem 58. Let V be a rational vector space with lattice VZ. Let
p ⊂ V be a simple rational polytope and let f be a face of p. Let
ttrans(p, f) ⊂ V/ lin f be the transverse cone. The tangent cone to p at
the vertex s is denoted by s+ cs. For ξ ∈ V ∗, let

S(s+ cs)(ξ) =
∑

x∈(s+cs)∩VZ

e〈ξ,x〉.

The set of vertices of f is denoted by V(f).
(i) The sum

∑
s∈V(f) S(s + cs)(ξ) restricts to a meromorphic function

on lin f⊥ ⊂ V ∗, which is given by∑
s∈V(f)

S(s+ cs)(ξ) =
∑

y∈ttrans(p,f)∩(V/ lin f)Z

e〈ξ,y〉P (y),

where P (y) is a quasi-polynomial function on the projected lattice
(V/ lin f)Z ⊂ V/ lin f. Moreover if ξ is regular with respect to the cone
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ttrans(p, f), that is if ξ is not constant on a face strictly containing f,
then

∑
s∈V(f) S(s+ cs)(ξ) is holomorphic at ξ.

(ii) For y close enough to the vertex y0 of the transverse cone, P (y) is
the number of lattice points of the slice p ∩ (lin f + y).

Proof. We compute the signed sum of the generating functions of the
tangent cones taff(p, g) where g runs over the set F(f) ⊂ F(p) of faces
of f. Since taff(p, g) contains lines if g is not a vertex, we have∑

s∈V(f)

S(s+ cs)(ξ) =
∑

g∈F(f)

(−1)dim gS(taff(p, g))(ξ). (48)

We will relate the right hand side to sums over slices of p by affine
subspaces parallel to f.

We define

T (y)(x) =
∑

g∈F(f)

(−1)dim g[taff(p, g) ∩ (aff(f) + y)](x). (49)

The support of T (y) is illustrated in Fig.15.
Let us only observe that, as taff(p, g) ∩ aff(f) is the tangent cone of

the polytope f ⊂ aff(f) along its face g, we have, by Brianchon-Gram
theorem,

T (0) = [f].

Moreover, if y is small enough, then T (y) is the characteristic function
of the intersection p∩ (aff(f) + y). This result can be deduced from the
Euler relations. In the next section, in the case where p is simple, we
will obtain it as a consequence of Corollary 21 which is of course itself
based on the Euler relations via the Brianchon-Gram theorem.

Let us compute the right hand side of Equation (48). If ξ ∈ lin f⊥

then e〈ξ,x〉 is constant on lin f+ y. Identifying lin f⊥ with (V/ lin f)∗, we
denote this constant value by e〈ξ,y〉.

Thus, we slice the lattice VZ in slices parallel to the subspace lin f.
The slices are indexed by the projected lattice (V/ lin f)Z. We write∑

g∈F(f)

(−1)dim gS(taff(p, g))(ξ) =
∑

g∈F(f)

(−1)dim g
∑

x∈taff(p,g)

e〈ξ,x〉

=
∑

y∈(V/ lin f)Z

∑
g∈F(f)

(−1)dim g
∑

x∈taff(p,g)∩(lin f+y)∩VZ

e〈ξ,x〉. (50)

Let y0 ∈ V/ lin f be the projection of the face f. From (50), we obtain∑
s∈V(f)

S(s+ cs)(ξ) =
∑

y∈(V/ lin f)Z

e〈ξ,y〉
∑
x∈VZ

T (y − y0)(x). (51)
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The shift by y0 is there to make further notations simpler. At this
point, we postpone the proof of Theorem 58 until the next section,
where we will relate T (y) to the Brianchon-Gram continuation of the
face f, under the assumption that p is simple.

5.1. Brianchon-Gram continuation of a face of a partition poly-
tope. Let p = p(Φ, λ) ⊂ RN . Let f be a face of p. If λ is regular and
belongs to a tope τ , then there is a unique I ∈ G(Φ, τ) such that
f = f(Φ, λ, I) is the corresponding face. We have dim f = |I| − dimF .
If λ is on a wall, there may be several such pairs (τ, I).

Definition 59. Let I ⊂ {1, . . . , N} be such that the sequence ΦI gen-

erates F . Let Φ̃I = (φ̃i), 1 ≤ i ≤ N , be the sequence of elements in

F ⊕ RIc defined by φ̃i = φi if i ∈ I and φ̃i = φi ⊕ ei, if i ∈ Ic.

Lemma 60. (i) The sequence Φ̃I generates a salient cone of full di-
mension in F ⊕ RIc.
(ii) V (Φ̃I , (λ, y)) = {x ∈ RN ;

∑N
i=1 xiφi = λ, xi = yi for i ∈ Ic}.

(iii) Let τ be a ΦI-tope. Let R be an open quadrant in RIc. Then

{(λ, y) ∈ F ⊕ RIc ; y ∈ R, λ −
∑

i∈Ic yiφi ∈ τ} is a Φ̃I-tope and all

Φ̃I-topes are of this form.

(iv) Let τ be a ΦI-tope, let τI be the Φ̃I-tope which consists of (λ, y)

such that yi > 0 for i ∈ Ic and λ −
∑

i∈Ic yiφi ∈ τ . Then G(Φ̃I , τI) is
the set of K ∪ Ic, where K ⊆ I and K ∈ G(ΦI , τ). Hence

X(Φ̃I , τI) =
∑

K∈G(ΦI ,τ)

(−1)|K|−dimF
∏
i∈I\K

pi
∏

i∈K∪Ic
(pi + qi).

Proof. (i) follows from the fact that ΦI generates F . (ii) is immediate.
Consider the linear bijection from F ⊕RIc to itself defined by (λ, y) 7→
(λ −

∑
i∈Ic yiφi, y). The image of φ̃i is φi if i ∈ I, and ei if i ∈ Ic.

Therefore the Φ̃I-topes are the pull-backs of the topes relative to the
sequence ψi = φi if i ∈ I and ψi = ei if i ∈ Ic. The latter are the
products of ΦI-topes in F with the quadrants in RIc . This proves (iii).

Let K̃ ⊆ {1, . . . , N}. Then Φ̃K̃ generates F ⊕ RIc if and only if

K̃ = K ∪ Ic, where K ⊆ I is such that ΦK generates F . Moreover

τI ⊂ c((Φ̃I)K̃) if and only if τ ⊂ c(ΦK), whence (iv). �

Proposition 61. Let τ be a Φ-tope and let λ ∈ τ . Let p = p(Φ, λ)
and f = fI(Φ, λ) be a face of p. Assume that dim f = |I| − dimF . We
identify the quotient space V/ lin f with RIc by the projection parallel to
RI . Let τI be the ΦI-tope which contains τ . If yi ≥ 0 for i ∈ Ic and
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λ−
∑

i∈Ic yiφi ∈ τI , then

X (Φ̃I , τI)[V (Φ̃I , (λ, y))] = [p(Φ̃I , (λ, y))] = [p(Φ, λ) ∩ (aff(f) + y)].
(52)

In particular, if λ is regular, the conditions yi ≥ 0 for i ∈ Ic and
λ −

∑
i∈Ic yiφi ∈ τI define a neighborhood of y = 0 in RIc

≥0 on which
(52) holds.

Proof. The conditions yi ≥ 0 for i ∈ Ic and λ −
∑

i∈Ic yiφi ∈ τI mean

that (λ, y) belongs to the closure of the Φ̃I-tope τI associated to τI .
Therefore by Corollary 21, we have

X (Φ̃I , τI)[V (Φ̃I , (λ, y))] = [p(Φ̃I , (λ, y))].

Moreover, as dim f = |I| − dimF , the affine span aff(f) is given by

aff(f) = {x ∈ V (Φ, λ);xi = 0 for i ∈ Ic}. It follows that V (Φ̃I , (λ, y)) =

aff(f) + y, hence p(Φ̃I , (λ, y)) = p(Φ, λ) ∩ (aff(f) + y). �

Remark 62. Define q0(p, f, τ) ⊆ RIc

≥0 by

q0(p, f, τ) = {y = (yi) ∈ RIc ; yi ≥ 0 for i ∈ Ic, λ−
∑
i∈Ic

yiφi ∈ τI}.

The set q0(p, f, τ) is a polytope in V/ lin f ' RIc. Let us denote its cone
at vertex 0 by t0(p, f, τ).

t0(p, f, τ) = {y = (yi) ∈ RIc ; yi ≥ 0 for i ∈ Ic,

λ− ε
∑
i∈Ic

yiφi ∈ τI for ε > 0 small enough }.

Then t0(p, f, τ) is a subcone of the transverse cone t0(p, f). If λ ∈ τ is
regular, then t0(p, f, τ) = t0(p, f) = RIc

≥0 .
If λ lies on a wall of a tope τ , then t0(p, f, τ) may be strictly contained

in the transverse cone t0(p, f). When we consider all the topes τ such
that λ ∈ τ , the cones t0(p, f, τ ′) form a subdivision of t0(p, f). An
example is illustrated in Fig. 14. The polytope p ⊂ R3 is a tipi with
four poles, with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0) and
f is the vertical edge with vertices (0, 0, 0), (0, 0, 1). The picture shows
also the corresponding system Φ such that p corresponds to a partition
polytope p(Φ, λ). In this case, λ belongs to the wall generated by φ3,
thus λ belongs to two tope closures τ1 and τ2. We identify the quotient
V/ lin(f) with the ground. Then the sets q0(p, f, τi) are the two triangles
which subdivide the ground face of the tipi.

This remark suggests how to modify Proposition 63 in the case of a
non simple polytope.
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Figure 14.

Proposition 63. Let Φ = (φj)1≤j≤N be a sequence of non zero ele-
ments of a vector space F , generating F, and spanning a salient cone.
Let τ be a Φ-tope, λ ∈ τ a regular element and I ∈ G(Φ, τ). Let
p = p(Φ, λ) and f = f(Φ, λ, I).

We identify the quotient space V/ lin f with RIc by the projection
parallel to RI . For y ∈ RIc, let

T (y) =
∑

g∈F(f)

(−1)dim g[taff(p, g) ∩ (aff(f) + y)], (53)

where the set of faces of f is denoted by F(f) .

Let Φ̃I = (φ̃i), 1 ≤ i ≤ N , be the sequence of elements in F ⊕ RIc

defined by φ̃i = φi if i ∈ I and φ̃i = φi ⊕ ei, if i ∈ Ic. Let τI be the

Φ̃I-tope which consists of elements (λ, y) ∈ F ⊕ RIc such that yi > 0
for i ∈ Ic and λ−

∑
i∈Ic yiφi ∈ τI , where τI is the unique ΦI-tope which

contains τ . Then

T (y)(x) = X (Φ̃I , τI)(x)[V (Φ̃I , (λ, y))](x)
∏
i∈Ic

[yi ≥ 0], (54)

Proof. The faces g of f = f(Φ, λ, I) are indexed by the subsets K ∈
G(Φ, τ) which are contained in I. For g = f(Φ, λ,K), we have

taff(p, g) = {x ∈ V (Φ, λ);xi ≥ 0 for i ∈ Kc}.
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Figure 15. Brianchon-Gram continuation of a face.
The segment and the triangle in red come with a minus
sign. The end-points of the segment have to be deleted
and two edges of the triangle also.

We write (53) as

T (y) =
∑

K∈G(Φ,τ),K⊆I

(−1)|K|−dimF
∏
i∈Kc

[xi ≥ 0] [aff(f) + y]. (55)

We observe that G(ΦI , τI) = {K ∈ G(Φ, τ), K ⊆ I}. Therefore, by
Lemma 60, we have

X (Φ̃I , τI)[V (Φ̃I , (λ, y))] =∑
K∈G(Φ,τ),K⊆I

(−1)|K|−dimF
∏
i∈I\K

[xi ≥ 0][V (Φ̃I , (λ, y))].

We factor out
∏

i∈Ic [xi ≥ 0] in each summand of (55).

As V (Φ̃I , (λ, y)) = aff(f) + y, we obtain

T (y)(x) = X (Φ̃I , τI)(x)[V (Φ̃I , (λ, y))](x)
∏
i∈Ic

[xi ≥ 0].

As xi = yi for i ∈ Ic if x ∈ V (Φ̃I , (λ, y)), we obtain (54) �
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We resume the proof of Theorem 58.

Proof of Theorem 58. We identify p with a partition polytope p(Φ, λ)
by an affine map V ' V (Φ, λ). We can assume that λ is regular. Some
care is needed with respect to the lattice VZ. In general, its image
V (Φ, λ)Z in V (Φ, λ) is not ZN ∩V (Φ, λ). However we can always write
V (Φ, λ)Z = (b + Γ) ∩ V (Φ, λ) , where b ∈ QN and Γ is a lattice in
RN , (Γ is a fixed lattice and b projects on λ). Let τ be the Φ-tope
which contains λ and let I ∈ G(Φ, τ) such that f is identified with
the face f(Φ, λ, I). Then V/ lin f is identified with V/ lin f ' RIc and
the projected lattice (V/ lin f)Z is identified with a lattice in RIc . By
Proposition 63, we have, for every x ∈ RN ,

T (y)(x) = X (Φ̃I , τI)[V (Φ̃I , (λ, y))](x)
∏
i∈Ic

[yi ≥ 0].

So we define

P (y) =
∑
x∈b+Γ

X (Φ̃I , τI)[V (Φ̃I , (λ, y − y0))](x).

Then P (y) is a quasi-polynomial function of y ∈ (V/ lin f)Z. This fact
follows from a minor generalization of Theorem 54 (ii). We only have
to take care of the shifts: the summation is over x ∈ b + Γ and the
parameter y−y0 in the Brianchon-Gram function runs over the shifted
lattice (V/ lin f)Z − y0.

The equalities (50) and (51) of generalized functions imply equali-
ties of holomorphic functions of ξ in an open subset of (lin f)⊥, hence∑

s∈V(f) S(s + cs)(ξ) restricts to a meromorphic function on (lin f)⊥,
given by ∑

s∈V(f)

S(s+ cs)(ξ) =
∑

y∈ttrans(p,f)∩(V/ lin f)Z

e〈ξ,y〉P (y). (56)

So we have proved (i).
By Proposition 61, for y ∈ ttrans(p, f) close to the vertex, T (y − y0)

is the characteristic function of the slice p∩ (aff(f) + y), hence (ii). �

�

6. Cohomology of line bundles over a toric variety

Let us indicate the relation of our work with toric varieties. Let
Φ = (φj)1≤j≤N be a sequence of non zero elements of a vector space F ,
generating F, and spanning a salient cone. Assume that the φi’s belong
to a lattice Λ and let T be the torus with character group Λ embedded
in TN = SN1 by the characters of T associated to (φi). This determines
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an action of T in the complex space CN . Each tope τ determines a toric
variety Mτ (with orbifold singularities) for the quotient torus TN/T ,
in the following way. If λ ∈ τ , Mτ is the reduced manifold CN//λT at
λ ∈ t∗. Then the vectors φi parameterize the boundary divisors Di in
Mτ and each element λ ∈ Λ determines a TN -equivariant sheaf O(λ)
on Mτ .

The lattice of characters of the d-dimensional torus TN/T is identi-
fied with V ∩ ZN .

The torus TN acts on the cohomology groups H i(Mτ ,O(λ)). When
λ ∈ τ , then all the cohomology groups H i for i > 0 vanish, and a weight
m ∈ ZN of TN occurs in H0(Mτ ,O(λ)) if and only if m ∈ p(Φ, λ)∩ZN .
Thus the dimension of the space H0(Mτ ,O(λ)) is just the number of
integral points in p(Φ, λ).

If λ ∈ Λ does not belong to the tope τ , and i > 0, the cohomology
space H i(Mτ ,O(λ)) is in general not zero. It is natural to introduce
the virtual space

H(τ, λ) :=
d∑
i=0

(−1)iH i(Mτ ,O(λ)).

It follows from the Kawasaki-Riemann-Roch theorem that the virtual
dimension of H(τ, λ) is a quasi polynomial function of λ.

More precisely, we can use the fixed point theorem to compute the
character of TN in H(τ, λ) (see [7]). As the construction of the present
article reproduces this fixed point theorem at the level of sets, we obtain
the weight decomposition of the TN -module

H(τ, λ) =
∑

m∈ZN∩V (Φ,λ)

X (Φ, τ)(m)em.

In other words, the function X (Φ, τ) on ZN computes simultaneously
(for all sheaves O(λ)) the multiplicity of a weight m in the alter-
nate sum of cohomology spaces. In particular, the function X (Φ, τ) ∩
[V (Φ, λ)] is the constructible function on V (Φ, λ) associated by Morelli
[16] to the sheaf O(λ).

Recall the formula

X (Φ, τ) =
∑
B

z(Φ, τ, B)[QB
neg].

Let us comment on the explicit computation of the coefficients z(Φ, τ, B)
of X (Φ, τ). We wrote a brute force Maple program to compute X(Φ, τ),
out of its definition (Equation (11)), by enumerating the generating
subsets of the system Φ and checking which ones are in G(Φ, τ). It
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would be certainly more efficient to use Theorem 25, and then deter-
mine B(Φ, τ) using the reverse-search algorithm of Avis-Fukuda [1].
Anyway, we obtain the decomposition as a sum of monomials

X(Φ, τ) =
∑
B

z(Φ, τ, B)
∏
i∈Bc

pi
∏
j∈B

qj.

If m ∈ ZN , we denote by Bm the set of indices i such that mi < 0. Then
the multiplicity of m in the TN module H(τ, λ) is obtained by com-
puting the coefficient z(Φ, τ, Bm) of the monomial

∏
i∈Bcm

pi
∏

i∈Bm qi
in X(Φ, τ).

Y. Karshon and S. Tolman [14] have studied the representation space
H(τ, λ) associated to a non-ample line bundle on the manifold Mτ , and
they have given an algorithm to compute a weight in this representa-
tion space by wall crossing. Our algorithm (Theorem 48) to determine
z(Φ, τ, B) is probably very similar. However, as we deal with arbitrary
“weights” φi (not assumed rational), our methods use “only linear al-
gebra”, not geometry.

By summing up the multiplicities of the weights inH(τ, λ), we obtain
the expression of the function

λ 7→ dimH(τ, λ) =
∑
B

z(Φ, τ, B)cardinal(pflip(Φ, B, λ) ∩ ZN)

as a sum of partition functions with respect to particular flipped sys-
tems.

Remark that if λ ∈ (τ − b(Φ)) ∩ Λ, the continuity property asserts
that the dimension of H(τ, λ) is still equal to the dimension of H0, that
is the cardinal of p(Φ, λ)∩ZN . This is in accordance with the following
vanishing theorem [17].

Theorem 64. If λ ∈ (τ − b(Φ))∩Λ then H i(Mτ ,O(λ)) = 0 for i > 0.

It would be interesting to study the locally quasi polynomial func-
tion hi(Φ, τ)(λ) = dimH i(Mτ ,O(λ)) for each i. ¿From Demazure’s
description of the individual cohomology groups H i(Mτ ,O(λ)) (see for
example the forthcoming book [11], Chapter 9), we see that it is a lo-
cally quasi-polynomial function, sum of partition functions of flipped
systems. Thus each locally quasi polynomial function hi(Φ, τ) is a
particular element of the generalized Dahmen-Micchelli space F(Φ) in-
troduced in [13]. It would be interesting to study the relations between
these different locally quasi polynomial functions on Λ.

Let us give a last example to illustrate the method. We consider
the hexagon defined by the following inequalities in R2. x1 ≥ 0, x1 ≤
2, x2 ≥ 0, x1 + x2 ≥ 1, x1 + x2 ≤ 4, x1 − x2 ≥ −2. The corresponding
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toric variety Mhex of dimension 2 is defined by the fan with edges
(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (1,−1).

We can also describe Mhex as a reduced Hamiltonian manifold, with
the help of an ample line bundle. We consider the standard torus of
dimension 4 acting in C6 with the following list Φ of weights

((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (−1,−1, 1, 1), (1,−1, 0, 1)).

If τ is the tope which contains the vector [2,−1, 2, 4], then the reduced
manifold Mτ is the manifold Mhex.

We compute X(Φ, τ) (by brute force) and obtain:

X(Φ, τ) =

p1p2p3p4p5p6 − p1p2p3p4q5q6 − p1p2p3p5q4q6 − p1p2p3p6q4q5

− 2 p1p2p3q4q5q6

−p1p2p4p6q3q5−p1p2p4q3q5q6−p1p2p6q3q4q5−p1p2q3q4q5q6−p1p3p5p6q2q4

−p1p3p5q2q4q6−p1p3p6q2q4q5−p1p3q2q4q5q6−p1p4p5p6q2q3−p1p4p6q2q3q5

−p1p5p6q2q3q4−p1p6q2q3q4q5−p2p3p4p5q1q6−p2p3p4q1q5q6−p2p3p5q1q4q6

−p2p3q1q4q5q6−p2p4p5p6q1q3−p2p4p5q1q3q6−p2p4p6q1q3q5−p2p4q1q3q5q6

− p3p4p5p6q1q2 − p3p4p5q1q2q6 − p3p5p6q1q2q4 − p3p5q1q2q4q6

− 2 p4p5p6q1q2q3

− p4p5q1q2q3q6 − p4p6q1q2q3q5 − p5p6q1q2q3q4 + q1q2q3q4q5q6.

We can immediately read on this expression the multiplicity of a weight
m = (m1,m2,m3,m4,m5,m6) in the space H(τ, λ) for any m and any
λ. We see that the multiplicities of m can be 0,1,−1,−2 depending on
the quadrant in which m lies.

For example, for λ = (200, 434, 378,−400), the weight

m = (200, 234, 478,−200,−100,−100)

has multiplicity −2 in the space H(τ, λ). Indeed the coefficient of
p1p2p3q4q5q6 in X(Φ, τ) is −2.

Given λ ∈ Z4, we parameterize the integral points in V (Φ, λ) by
(x1, x2) ∈ Z2, with corresponding m ∈ Z6 given by

m = (λ1 + x1 − x2, λ2 + x1 + x2, λ3 − x1, λ4 − x1 − x2, x1, x2).

With this parametrization, the figures 16, 17 and 18 describe the sup-
port of the module H(τ, λ) as λ moves along the line joining λ0 =
(200,−100, 200, 400 (in the ample cone) to λ1 = (200, 434, 378,−400).
The line crosses six walls.

We assign colors to the multiplicities: blue = 1, yellow := −1,
red := −1, green := −1, magenta := −2, black := −1, khaki = −1.
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In the first figure 16, λ is in the starting tope (the ample cone). In the
last three steps, a polygon with multiplicity −2 (colored in magenta)
has appeared in the middle of the picture.

Figure 16. At the beginning λ = (200,−100, 200, 400)
is in the ample cone. The partition polytope is an
hexagon.

Figure 17. From left to right, λ crosses three walls, one
at a time. The new triangles have multiplicity -1.

Figure 18. λ crosses three more walls. The polytope
colored in magenta has multiplicity -2.
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