
MOSCOW MATHEMATICAL JOURNAL

Volume 7, Number 3, July–September 2007, Pages 355–386

LOCAL EULER–MACLAURIN FORMULA FOR POLYTOPES

NICOLE BERLINE AND MICHÈLE VERGNE

Dedicated to Askold Khovanskii

Abstract. We prove a local Euler–Maclaurin formula for rational con-
vex polytopes in a rational Euclidean space. For every affine rational
polyhedral cone c in V , we construct a differential operator of infinite
order D(c) on V with constant rational coefficients. Then for every con-
vex rational polytope p in V and every polynomial function h(x) on V ,
the sum of the values of h(x) at the integral points of p is equal to the
sum, for all faces f of p, of the integral over f of the function D(t(p, f)) ·h
where we denote by t(p, f) the transverse cone of p along f, an affine cone
of dimension equal to the codimension of f. Applications to numerical
computations when p is a polygon are given.
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1. Introduction

By the name Euler–Maclaurin, one refers to formulas which relate discrete sums
to integrals, in particular in the following framework. Let p be a rational convex
polytope in Rd and let h(x) be a polynomial function on Rd. The sum of the values
h(x) at integral points of p is written as a sum of terms indexed by the set F(p) of
faces of p,

∑

x∈p∩Zd

h(x) =
∑

f∈F(p)

∫

f

D(p, f) · h (1)

where, for each face f of p, D(p, f) is a differential operator (of infinite order) with
constant coefficients on Rd. The basic example is the historical Euler–Maclaurin
summation formula in dimension 1: for a1 6 a2 ∈ Z,

a2
∑

a1

h(x) =

∫ a2

a1

h(t)dt −
∑

n>1

b(n)

n!
h(n−1)(a1) +

∑

n>1

(−1)n b(n)

n!
h(n−1)(a2)

where b(n) are the Bernoulli numbers.
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When p is an integral polytope, the existence of such operators is the combi-
natorial counterpart of a homological property of the associated toric variety: the
invariant cycles corresponding to the faces of p generate the equivariant homol-
ogy module. An Euler–Maclaurin formula amounts to an explicit Riemann–Roch
theorem, as obtained by Khovanskii and Pukhlikov [20] for integral polytopes cor-
responding to smooth toric varieties, and extended by Cappell and Shaneson [11]
to any integral polytope. Furthermore, by transforming Cappell–Shaneson homo-
logical methods into purely combinatorial techniques, valid for any rational (not
necessary integral) polytope, Brion and Vergne [9] obtained various expressions for
the sum

∑

x∈p∩Zd h(x), either as an integral over a deformed polytope followed by

differentiation with respect to the deformation parameter, or formulas of type (1).
In this article, we construct differential operators D(p, f), with rational coeffi-

cients, which satisfy (1) and which moreover enjoy two essential properties: they
are local and they are computable. The existence of operators with these properties
was conjectured in [4].

By local, one means that D(p, f) depends only on the equivalence class — modulo
integral translations— of the transverse cone t(p, f) of p along f (see Definition 2
and Figure 4). In particular, if p is an integral polytope, the operator D(p, f)
depends only on the cone of feasible directions of p along f.

By computable, one means that there exists an algorithm which computes the
m lowest order terms of D(p, f), with running time polynomial with respect to the
size of the data defining p, at least when the dimension d and the number m are
fixed.

On the contrary, Cappell–Shaneson and Brion–Vergne operators are neither local
nor computable.

When applied to the constant polynomial h(x) = 1, equation (1) takes the form

Card(p ∩ Zd) =
∑

f∈F(p)

ν0(p, f) vol(f) (2)

where the coefficients ν0(p, f) are rational numbers. In the context of toric varieties,
Danilov [14] asked the question of existence of coefficients ν0(p, f) with the local
property, in the case of an integral polytope. This result was proven by Morelli
[18] and McMullen [17]. In [19], Pommersheim and Thomas gave a canonical con-
struction of rational coefficients ν0(p, f) which satisfy (2), as a consequence of their
expression for the Todd class of a toric variety. In a companion article [6], we will
similarly obtain a local formula for the equivariant Todd class of any toric variety.
The result is stated in Theorem 25.

The computability of our operators D(p, f) extends the following remarkable re-
sult of Barvinok [2]: when the dimension d is fixed, the number of integral points
Card(p ∩ Zd) can be computed by a polynomial time algorithm. This result is a
consequence of Brion’s theorem [7], according to which the computation can be
distributed over the tangent cones at the vertices, and of Barvinok’s signed decom-
position of a cone into unimodular cones by a polynomial time algorithm. Based on
this method, efficient software packages for integer points counting problems and
the effective computation of

∑

x∈p∩Zd h(x) have been developed [15], [16], [23], [24].
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Let us now explain the construction of the operators D(p, f). We define the
differential operator D(p, f) through its symbol, using a scalar product on Rd. For
this purpose, we first associate an analytic function µ(a) (defined on a neighborhood
of 0) on Rd to any rational affine cone a ⊂ Rd.

For instance, for a half-line s + R+, we have

µ(s + R+)(ξ) =
e[[s]]ξ

1 − eξ
+

1

ξ
.

where [[s]] = n − s, with n ∈ Z, n − 1 < s 6 n. Remark that this function is
analytic at 0, with value at 0 given by µ(s + R+)(0) = 1

2 − [[s]].
The assignment a 7→ µ(a) has beautiful geometric properties. The most impor-

tant one is that it is a valuation when the vertex of a is fixed (Theorem 21). For
instance,

µ(a1 ∪ a2) = µ(a1) + µ(a2) − µ(a1 ∩ a2). (3)

Moreover, µ(a) is unchanged when a is moved by a lattice translation, and the
map a 7→ µ(a) is equivariant with respect to lattice-preserving isometries. In partic-
ular, with the standard scalar product, we thus get invariants of the group O(n, Z).

If a contains a straight line, we set µ(a) = 0. If a is pointed with vertex s, we
define µ(a) recursively by the relation:

µ(a)(ξ) = e−〈ξ,s〉
(

∑

x∈a∩Zd

e〈ξ,x〉 +
∑

f,dim(f)>0

µ(t(a, f))(ξ)

∫

f

e〈ξ,x〉dmf(x)
)

(4)

where f denotes a face of a and dmf(x) denotes the canonical Lebesgue measure
on f defined by the lattice. In (4), the function µ(t(a, f)) is a priori defined only
on a subspace of Rd, namely the orthogonal to the face f. We extend it to Rd by
orthogonal projection. Our main point is to show that equation (4) actually defines
an analytic function. Thanks to the valuation property, the proof is reduced to the
case of a simplicial unimodular cone.

Then we define D(p, f) as the differential operator with symbol µ(t(p, f))(ξ). If
the scalar product is rational, the Taylor series of µ(a) has rational coefficients, in
particular the numbers ν0(p, f) in (2) are rational. Note that D(p, f) involves only
differentiation in directions perpendicular to f.

With this definition, Euler–Maclaurin formula (1) for any rational polytope p

follows easily from Brion’s theorem. Indeed, the defining formula (4) is formally
equation (1) where the polytope p is replaced by the cone a and the polynomial
h(x) is replaced by the exponential e〈ξ,x〉.

The computability of the functions µ(t(p, f)) is also deduced from Barvinok’s
fast decomposition of cones, thanks to the valuation property.

Moreover, Barvinok proved recently [3] that, given an integer m, there exists a
polynomial time algorithm which computes the m highest coefficients of the Ehrhart
quasipolynomial of any rational simplex in Rd, when the dimension d is considered

as an input. We hope that our construction of the functions µ(a) will lead to another
polynomial time algorithm which would compute the m highest coefficients of the
Ehrhart quasipolynomial for any simplex in Rd and any polynomial h(x), when the
dimension d and the degree of h are considered as input. We want to point out that
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our construction involves only cones of dimension less than m when computing the
m highest order Ehrhart coefficients. In the article [1], we compare our construction
to the mixed valuation method of [3].

Let us illustrate the results in dimension 2. For an affine cone a with integral
vertex s and edges generated by two integral vectors v1, v2 with det(v1, v2) = 1,
(that is to say, a is unimodular), we have:

µ(a)(0) =
1

4
+

〈v1, v2〉

12

(

1

〈v1, v1〉
+

1

〈v2, v2〉

)

.

For a general cone, we compute µ(a)(0) using the valuation property (3).
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Figure 1. Coefficient ν0(p, s) = µ(t(p, s))(0) at the vertex s
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Figure 2. Cappell–Shaneson coefficients

According to Pick’s theorem, the number of integral points of an integral polygon
p ⊂ R2 is given by

Card(p ∩ Z2) = area(p) +
1

2
lengthZ2 ∂(p) + 1.

According to our local formula, as well as Pommersheim–Thomas’s, we have:

Card(p ∩ Z2) = area(p) +
1

2
lengthZ2 ∂(p) +

∑

s

ν0(p, s)

with ν0(p, s) = µ(t(p, s))(0), where s runs over the vertices of p. Thus the con-
stant 1 is canonically distributed over the vertices (Figure 1). Cappell–Shaneson
coefficients [12] give a different, non-local, distribution of the constant 1 over the
vertices. For instance, the bottom right coefficients in the square and the trapezoid
of Figure 2 are different, although the vertices have the same tangent cone.
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More examples are given at the end of the paper, for polygons p with rational
(non-integral) non-unimodular vertices. Based on our Euler–Maclaurin operators,
we wrote a Maple program which computes the value of the sum

∑

x∈p∩Z2 xm1
1 xm2

2

and also the (periodic) coefficients of the corresponding Ehrhart quasipolynomial.

2. Definitions and Notations

We consider a rational vector space V , that is to say a finite dimensional real
vector space with a lattice denoted by ΛV or simply Λ. By lattice, we mean a
discrete additive subgroup of V which generates V as a vector space. Hence, a
lattice is generated by a basis of the vector space V . A basis of V which is a
Z-basis of ΛV is called an integral basis.

We will need to consider subspaces and quotient spaces of V , this is why we
cannot just let V = Rd and Λ = Zd. The points of Λ are called integral. A point
x ∈ V is called rational if qx ∈ Λ for some integer q 6= 0. The space of rational
points in V is denoted by VQ. A subspace W of V is called rational if W ∩ Λ is a
lattice in W . If W is a rational subspace, the image of Λ in V/W is a lattice in
V/W , so that V/W is a rational vector space.

A rational space V , with lattice Λ, has a canonical Lebesgue measure, for which
V/Λ has measure 1. An affine subspace W of V is called rational if it is a translate of
a rational subspace by a rational element. It is similarly provided with a canonical
Lebesgue measure. We will sometimes denote this measure by dmW . For example,
let W be a rational line of the form W = s + Rv. Assume that v is a generator of
the group Rv ∩ Λ (we say that v is a primitive vector). Then dmW (s + tv) = dt.

If vi ∈ VQ are linearly independent vectors, we denote by �(v1, . . . , vk) the
semi-open parallelepiped generated by the vi’s:

�(v1, . . . , vk) =

k
∑

i=1

[0, 1) vi.

We denote by vol(�(v1, . . . , vk)) its relative volume, that is to say its volume with
respect to the canonical measure on the subspace generated by v1, . . . , vk.

We denote by V ∗ the dual space of V . We will denote elements of V by latin
letters x, y, v, . . . and elements of V ∗ by greek letters ξ, α, . . . . We denote the
duality bracket by 〈ξ, x〉.

V ∗ is equipped with the dual lattice Λ∗ of Λ:

Λ∗ = {ξ ∈ V ∗ : 〈ξ, x〉 ∈ Z for all x ∈ Λ}.

If S is a subset of V , we denote by S⊥ the subspace of V ∗ orthogonal to S:

S⊥ = {ξ ∈ V ∗ : 〈ξ, x〉 = 0 for all x ∈ S}.

If W is a subspace of V , the dual space (V/W )∗ is canonically identified with
the subspace W⊥ ⊂ V ∗.

If S is a subset of V , we denote by 〈S〉 the affine subspace generated by S. If S
consists of rational points, then 〈S〉 is rational. Remark that 〈S〉 may contain no
integral point. We denote by lin(S) the vector subspace of V parallel to 〈S〉.
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0

lin(S)

〈S〉

Figure 3. The affine space 〈S〉 and the linear space lin(S)

The set of non-negative real numbers is denoted by R+. A convex rational cone

c in V is a closed convex cone
∑k

i=1 R+vi which is generated by a finite number
of elements vi of VQ. In this article, we simply say cone instead of convex rational
cone.

An affine (rational) cone a is, by definition, the translate of a cone in V by an
element s ∈ VQ. This cone is uniquely defined by a; it is called the cone of directions
of a and denoted by dir(a). Thus a = s + dir(a).

A cone c is called simplicial if it is generated by independent elements of VQ.
A simplicial cone c is called unimodular if it is generated by independent integral
vectors v1, . . . , vk such that vol(�(v1, . . . , vk)) = 1. An affine cone a is called
simplicial (resp. simplicial unimodular) if dir(a) is simplicial (resp. simplicial uni-
modular).

An affine cone a is called pointed if it does not contain any straight line.
The set of faces of an affine cone a is denoted by F(a). If a is pointed, then the

vertex of a is the unique face of dimension 0, while a is the unique face of maximal
dimension dim a.

The dual cone c∗ of a cone c is the set of ξ ∈ V ∗ such that 〈ξ, x〉 > 0 for any
x ∈ c.

A convex rational polyhedron p in V (we will simply say polyhedron) is, by
definition, the intersection of a finite number of half spaces bounded by a rational
affine hyperplane.

Definition 1. We say that p is solid (in V) if 〈p〉 = V .

The set of faces of p is denoted by F(p) and the set of vertices of p is denoted
by V(p).

We now introduce the main geometrical object in our study, the transverse cone

of a polyhedron p along one of its faces f (see Figure 4). Let x be a point in the
relative interior of f. Recall that the cone of feasible directions of p at x is the set
c(p, f) := {v ∈ V : x + ǫv ∈ p for ǫ > 0 small enough}. It does not depend on the
choice of x and contains the linear space lin(f). The supporting cone of p along f is
the affine cone 〈f〉 + c(p, f). We denote the projection V → V/lin(f) by πf.

Definition 2. Let p be a polyhedron and f a face of p. The transverse cone t(p, f)
of p along f is the image πf(〈f〉 + c(p, f)) of the supporting cone in V/lin(f).

We will often write simply transverse cone along f, when p is understood.
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Figure 4. The transverse cone along an edge in dimension 3

If v is a vertex of p, the transverse cone t(p, v) coincides with the supporting
cone v + c(p, v) ⊂ V .

The transverse cone t(p, f) is a pointed affine cone in the quotient space V/lin(f).
Its dimension is equal to the codimension of f in 〈p〉. Its vertex is the projection
πf(x) of any point x of f on V/lin(f).

If a is an affine cone and f is a face of a, then the supporting cone is a + lin(f)
and the transverse cone t(a, f) along f is just the projection πf(a) of a on V/lin(f).

We shall make use of subdivisions of cones.

Definition 3. A subdivision of a cone c is a finite collection C of cones in V such
that:

(a) The faces of any cone in C are in C.
(b) If d1 and d2 are two elements of C, then the intersection d1 ∩ d2 is a face of

both d1 and d2.
(c) We have c =

⋃

d∈C d.

If furthermore the elements of C are simplicial cones, the subdivision will be called
simplicial.

Example 4. The basic example is the subdivision {R+, (−R+), {0}} of the one-
dimensional cone R.

It is easy to see that any pointed cone admits a subdivision into simplicial uni-
modular cones.

If S is a subset of V , we denote by χ(S) the characteristic function of S (also
called the indicator function of S). We denote by P(V ) the vector space spanned
by the characteristic functions of polyhedra pi in V . Let L be a vector space. A
linear map v from P(V ) to L is called a valuation. A valuation v is called simple,
if v(p) = 0 when p is of dimension strictly less than the dimension of V .
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Explicit expression of operators D(p, f) involves the Bernoulli polynomials b(n, t),
defined by the generating series

∞
∑

n=0

b(n, t)

n!
Xn =

etXX

eX − 1
. (5)

The Bernoulli number is b(n, 0) and is denoted by b(n).

3. Meromorphic Functions Associated to Polyhedra

By a meromorphic function on V ∗ with rational coefficients, we mean a mero-
morphic function on the complexification of V ∗ which can be written as the quotient
of two holomorphic functions with rational Taylor coefficients with respect to an
integral basis of V ∗.

We recall the construction of two meromorphic functions with rational coeffi-
cients on V ∗, associated to any polyhedron p in V (see the survey [4]). The first
function I(p) is defined via integration over p, the second function S(p) via sum-
mation over the set of integral points of p.

We denote by dm〈p〉 the relative Lebesgue measure on the affine space spanned
by p.

Proposition 5. There exists a map I which to every polyhedron p ⊂ V associates

a meromorphic function with rational coefficients I(p) on V ∗, so that the following

properties hold :

(a) If p contains a straight line, then I(p)=0.

(b) If ξ ∈ V ∗ is such that |e〈ξ,x〉| is integrable over p, then

I(p)(ξ) =

∫

p

e〈ξ,x〉dm〈p〉(x).

(c) For every point s ∈ VQ, we have

I(s + p)(ξ) = e〈ξ,s〉I(p)(ξ).

(d) The map I is a simple valuation: if the characteristic functions χ(pi) of

a family of polyhedra pi satisfy a linear relation
∑

i riχ(pi) = 0, then the

functions I(pi) satisfy the relation
∑

{i,〈pi〉=V }

riI(pi) = 0.

Example 6.

• If p = {s} is a point, then I(p)(ξ) = e〈ξ,s〉.

• In dimension 1, if p = s + R+, where s ∈ Q, then I(p)(ξ) = − eξs

ξ .

• If c is a simplicial cone generated by k 6 d independent vectors v1, . . . , vk, we
have

I(c)(ξ) = (−1)k vol(�(v1, . . . , vk))
∏k

i=1 〈ξ, vi〉
. (6)
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These formulas follow immediately from the computation in dimension 1 which
asserts that

∫∞

0
eξxdx = −1

ξ for ξ < 0. Thus, for a simplicial cone, the function

I(c) can indeed be extended as a rational function on the whole space V ∗.
In a similar way, one defines the second meromorphic function, which is the

discrete analogue of I(p).

Proposition 7. There exists a map S which to every polyhedron p ⊂ V associates

a meromorphic function with rational coefficients S(p) on V ∗ so that the following

properties hold :

(a) If p contains a straight line, then S(p)=0.

(b) If ξ ∈ V ∗ is such that
∑

x∈p∩Λ |e〈ξ,x〉| < ∞, then

S(p)(ξ) =
∑

x∈p∩Λ

e〈ξ,x〉. (7)

(c) For every integral point s ∈ Λ, we have

S(s + p)(ξ) = e〈ξ,s〉S(p)(ξ).

(d) The map S is a valuation: if the characteristic functions χ(pi) of a family

of polyhedra pi satisfy a linear relation
∑

i riχ(pi) = 0, then the functions

S(pi) satisfy the same relation

∑

i

riS(pi) = 0.

Example 8.

• If p = {s} is a point, then we have two cases. If s is an integral point, then
S({s})(ξ) = e〈ξ,s〉, otherwise S({s}) = 0.

• In dimension 1, if p = s + R+, where s ∈ Q, then

S(s + R+)(ξ) =
ekξ

1 − eξ

where k is the smallest integer greater or equal than s.
• Let a be a solid simplicial affine cone with vertex s ∈ VQ. Let v1, . . . , vd be

integral generators of the edges of a. Then

S(a)(ξ) =
(

∑

x∈(s+�(v1,...,vd))∩Λ

e〈ξ,x〉
)

d
∏

i=1

1

1 − e〈ξ,vi〉
. (8)

We obtain this formula by observing that any element x of the affine cone a can

be written in a unique way as a sum y +
∑d

i=1 nivi where y lies in the semi-open
parallelepiped s + �(v1, . . . , vd) and the coefficients ni are non-negative integers,
and that the point x is integral if and only if y is.

Thus indeed S(s + c) can be extended to a meromorphic function on the whole
of V ∗.
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Let us check the valuation property in dimension one:

Example 9. In dimension one, let s ∈ Q. The relation χ(s + R+) + χ(s − R+) −
χ({s}) = χ(R) must imply S(s + R+) + S(s − R+) = S({s}). If s = 0, we have
indeed

1

1 − eξ
+

1

1 − e−ξ
= 1 = S({s})(ξ),

while, if 0 < s < 1, then

S(s + R+)(ξ) =
eξ

1 − eξ
,

S(s − R+)(ξ) =
1

1 − e−ξ
,

thus S(s + R+) + S(s − R+) = 0 = S({s}).

The valuation property of the maps p → S(p) and p → I(p) have the following
important corollary. This was first obtained by Brion [7] using toric varieties:

Theorem 10 (Brion). Let p be a polyhedron in V . Then

I(p) =
∑

v∈V(p)

I(t(p, v)),

S(p) =
∑

v∈V(p)

S(t(p, v)).

The singularities of the functions I(a) and S(a) are easy to compute for a pointed
affine cone:

Lemma 11. Let a = s + c be a pointed affine cone with vertex s and let v1, . . . , vk

be rational generators of the edges of the cone c. The products
(

k
∏

i=1

〈ξ, vi〉

)

I(s + c)(ξ) and

(

k
∏

i=1

〈ξ, vi〉

)

S(s + c)(ξ)

are analytic near 0.

Proof. It is easy to see that the cone c admits a subdivision into simplicial cones
whose edges are already edges of c. Thus, thanks to the valuation properties of
Proposition 7, it is enough to prove the lemma when c itself is a simplicial cone. In
this case it follows immediately from (6) and (8). �

4. The Main Construction

In this section, we will perform the main construction of this article: to any
affine cone a in V or in a rational quotient V/L of V , we will associate an analytic

function µ(a) defined in a neighborhood of 0 in V ∗. In the next section, if p is a
convex rational polytope in V , we will obtain a local Euler–Maclaurin formula for
p in terms of the functions µ(t(p, f)) associated to the transverse cones t(p, f) of p

along its various faces f.
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We will denote the ring of analytic functions with rational coefficients, defined
in a neighborhood of 0 in V ∗, by H(V ∗) and the ring of meromorphic functions
with rational coefficients, defined in a neighborhood of 0 in V ∗, by M(V ∗)

We will need to extend to the space V ∗ some meromorphic functions which are
a priori defined only on a subspace of the form (V/L)∗ = L⊥ of V ∗. For that
purpose, we fix a scalar product Q(x, y) on V . We assume that Q is rational,
meaning that Q(x, y) is rational for x, y ∈ VQ. We denote also by Q(ξ, η) the dual
scalar product on V ∗ and we use the orthogonal projection projL⊥ : V ∗ → L⊥. If
φ is a meromorphic function (with rational coefficients) on L⊥, we still write φ for
the function on V ∗ defined by ξ 7→ φ(projL⊥(ξ)). It is meromorphic with rational
coefficients.

Actually, we will do this not only for the space V itself, but also when V is
replaced by a rational quotient space W . The dual W ∗ is a subspace of V ∗, thus it
inherits the scalar product of V ∗.

A word of caution. Let L be a rational subspace of V . By means of the scalar

product Q, we can identify V/L with L⊥Q ⊂ V , the orthogonal of L with respect

to Q. However these two spaces are not isomorphic as rational spaces. The lattice

of V/L corresponds to the orthogonal projection of Λ on L⊥Q ; it contains the lattice

L⊥Q ∩ Λ, and the inclusion is strict in general, see Figure 5.

0

Figure 5. In dimension 2, the transverse cone along an edge with
its lattice

Let a be an affine cone in V and let f be a face of a. Recall that the transverse
cone t(a, f) is the projection πf(a) of a in V/lin(f). When we identify V/lin(f)
with the orthogonal lin(f)⊥Q , the transverse cone t(a, f) is a pointed affine cone in
lin(f)⊥Q .

We denote by Cpointed(V ) the set of pointed affine cones in V .
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Proposition 12. Let V be a rational space and let Q be a rational scalar product

on V . There exists a unique family of maps µW , indexed by the rational quotient

spaces W of V , such that the family enjoys the following properties.

(a) µW maps Cpointed(W ) to M(W ∗).
(b) If W = {0}, then µW ({0}) = 1.
(c) For any pointed affine cone a in W , one has

S(a) =
∑

f∈F(a)

µW/lin(f)(t(a, f))I(f) (9)

where the sum is over the set of faces of a.

In (9), the transverse cone t(a, f) is a pointed affine cone in the quotient space
W/lin(f). The function µW/lin(f)(t(a, f)) is a meromorphic function on a neighbor-
hood of 0 in the dual (W/lin(f))∗. We give a meaning to the formula by extending
this function to a neighborhood of 0 in the whole space W ∗ by means of orthogonal
projection. The function I(f) is defined as a meromorphic function on W ∗ as in
Section 3.

Proof. The result is easily obtained by induction on the dimension of W . If W =
{0}, the only cone is a = {0} and (9) holds. Let a be a pointed affine cone in W .
Let s be the vertex of a. The transverse cone at the zero-dimensional face s is a

itself. Equation (9) gives

S(a)(ξ) = e〈ξ,s〉µW (a)(ξ) +
∑

f,dim f>0

µW/lin(f)(t(a, f))(ξ)I(f)(ξ). (10)

For a face f of positive dimension, the transverse cone t(a, f) is a pointed affine
cone in the vector space W/lin(f). Therefore, µW/lin(f)(t(a, f)) being defined by
the induction hypothesis, (10) defines µW (a) in a unique way, as a meromorphic
function on W ∗. �

The following property follows immediately from the definition:

Proposition 13. If V1 ⊂ V2 and a is an affine cone contained in V1, then the

function µV2
(a) is the lift to V ∗

2 of µV1
(a), by the natural restriction map V ∗

2 → V ∗
1 .

In the rest of this article, we will omit the subscript W in the notation µW (a).

Proposition 14. The functions defined in Proposition 12 have the following prop-

erties :

(a) For any s ∈ Λ, one has µ(s + a) = µ(a).
(b) The map a 7→ µ(a) is equivariant with respect to lattice-preserving linear

isometries. In other words, let g be a linear isometry of W which preserves

the lattice Λ and denote its transpose by tg, then µ(g(a))(tg−1ξ) = µ(a)(ξ).
(c) The map a 7→ µ(a) is multiplicative with respect to orthogonal sums of

cones. More precisely, if W is an orthogonal sum W = W1 ⊕ W2 and ai is

an affine cone in Wi for i = 1, 2, then

µ(a1 + a2) = µ(a1)µ(a2).

(d) If a ∈ Cpointed(W ) is such that 〈a〉 ∩ ΛW = ∅, then µW (a) = 0.
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Proof. The invariance in (a) and (b) and the multiplication rule in (c) follow imme-
diately from the definition, by induction. To prove (d), assume that 〈a〉 ∩ΛV = ∅.
Then S(a) = 0 and, for any face f of a, the transverse cone t(a, f) does not contain
any integral point of V/lin(f), therefore, by induction, µ(t(a, f)) = 0 for dim f > 0,
hence µ(a) = 0. �

If a is an affine cone in V which contains a straight line, we define µ(a) = 0.
Since all faces f of a contain a straight line, (9) still holds in this case. Thus we
have defined µ(a) for any rational affine cone in any quotient space of V .

Our objective is to show that µ(a) is indeed analytic near 0, but we will first
observe some further properties of this family of functions.

It is easy to compute µ in dimension 1. Let t ∈ Q such that 0 6 t < 1. Then
µ(−t + R+)(ξ) is defined by

S(−t + R+)(ξ) =
1

1 − eξ
= e−tξµ(−t + R+)(ξ) +

∫ ∞

−t

exξ dx

hence

µ(−t + R+)(ξ) =
etξ

1 − eξ
+

1

ξ
. (11)

We may write this in terms of the Bernoulli polynomials b(n, t), defined by the
generating series (5). We obtain

µ(−t + R+)(ξ) = −

∞
∑

n=0

b((n + 1), t)

(n + 1)!
ξn. (12)

Let a be a 1-dimensional pointed cone in V , that is to say a half-line. If a does
not contain any integral point, then µ(a) = 0. If a contains integral points, then
there exists an integral point a ∈ a such that the translated half-line a− a is of the
form

(−t + R+)v

where v is a primitive integral vector and t ∈ [0, 1).
By a similar computation, we get, for ξ ∈ V ∗,

µ(a)(ξ) =
et〈ξ,v〉

1 − e〈ξ,v〉
+

1

〈ξ, v〉
. (13)

The next step is crucial to our construction; we will prove that the map c →
µ(s + c) enjoys the valuation property:

Proposition 15. Let ci be a finite family of cones in V . Assume that there exists

a linear relation between their characteristic functions
∑

i riχ(ci) = 0. Then, for

any s ∈ VQ, we have the corresponding relation
∑

i riµ(s + ci) = 0.

Example 16. Consider the subdivision of Example 4 in dimension one. Let s ∈ Q.
Then

0 = µ(R) = µ(s + R+) + µ(s − R+) − µ({s}).

Indeed, if s is an integer, we have

µ(s + R+)(ξ) + µ(s − R+)(ξ) =

(

1

1 − eξ
+

1

ξ

)

+

(

1

1 − e−ξ
−

1

ξ

)

= 1 = µ({s})(ξ)
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while, if s ∈ (−1, 0), we have

µ(s + R+)(ξ) + µ(s−R+)(ξ) =

(

e−sξ

1 − eξ
+

1

ξ

)

+

(

e−(s+1)ξ

1 − e−ξ
−

1

ξ

)

= 0 = µ({s})(ξ).

Proof. We will prove the proposition by induction on dimV . By the argument of
[8], Proposition 4.1, it suffices to prove the result in the following particular case
(see Figure 6).

a ∩ H+ a ∩ H−

a ∩ H

Figure 6. The cut of a 3-dimensional cone with 5 edges by a 2-
dimensional plane H. The cone is represented by its slice in the
figure plane. Thus H is represented by a line.

Let a be a solid affine cone in V with vertex s, let H be an affine hyperplane
through s. Denote by H± the closed half-spaces separated by H. Then we have

χ(a) = χ(a ∩ H+) + χ(a ∩ H−) − χ(a ∩ H)

and we must prove:

µ(a) = µ(a ∩ H+) + µ(a ∩ H−) − µ(a ∩ H). (14)

Remark 17. Proposition 4.1 in [8] is stated for polytopes, but the same argument
can be applied to the set of affine cones with a fixed vertex. Remark also that we
do not assume that a is pointed.

We proceed to prove (14).
The functions S(a) have the valuation property

S(a) − S(a ∩ H+) − S(a ∩ H−) + S(a ∩ H) = 0.

By applying (9), we obtain the following expansion of the left hand side

∑

f∈F(a)

µ(t(a, f))I(f) −
∑

f∈F(a∩H+)

µ(t(a ∩ H+, f))I(f) −

−
∑

f∈F(a∩H−)

µ(t(a ∩ H−, f))I(f) +
∑

f∈F(a∩H)

µ(t(a ∩ H, f))I(f). (15)
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Let L be a affine subspace of V of dimension > 0. We will show

∑

f∈F(a),〈f〉=L

µ(t(a, f))I(f) −
∑

f∈F(a∩H+),〈f〉=L

µ(t(a ∩ H+, f))I(f) −

−
∑

f∈F(a∩H−),〈f〉=L

µ(t(a ∩ H−, f))I(f) +
∑

f∈F(a∩H),〈f〉=L

µ(t(a ∩ H, f))I(f) = 0.

(16)

From the relation (16), it follows that the terms in (15) corresponding to the faces
f of positive dimension add up to 0. Therefore the contribution of the 0-dimensional
vertex {s} to (15) is also equal to 0, which proves the relation (14).

We fix L and we proceed to prove (16).
Remark that all the transverse cones which appear in (16) are affine cones in

V/lin(L). We will apply the induction hypothesis to V/lin(L).
I) First we consider the case where there is a face f of a such that 〈f〉 = L.

There are three cases, according to whether the relative interior of f meets both
the interiors of H±, or only one, or none of them (in the third case, f is contained
in H).

a ∩ H+ a ∩ H−

a ∩ H

L f

Figure 7. Case I.1

• Case I.1: The relative interior of f meets both the interiors of H±. Then f∩H±

is a face of a ∩ H± and 〈f ∩ H±〉 = L. Thus we have to prove

µ(t(a, f))I(f)−µ(t(a∩H+, f∩H+))I(f∩H+)−µ(t(a∩H−, f∩H−))I(f∩H−) = 0.

The three transverse cones t(a, f), t(a∩H+, f∩H+) and t(a∩H−, f∩H−) coincide.
The integrals add up:

I(f) = I(f ∩ H+) + I(f ∩ H−),

thus we get

µ(t(a, f))
(

I(f) − I(f ∩ H+) − I(f ∩ H−)
)

which is equal to 0 as required.
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a ∩ H+ a ∩ H−

a ∩ H

L

f

a ∩ H+ a ∩ H−

a ∩ H

L

f

Figure 8. Case I.2

• Case I.2: The relative interior of f is contained in the interior of, say, H+.
Then f = L ∩ a ∩ H+ is also a face of a ∩ H+, but L ∩ a ∩ H− and L ∩ a ∩ H are
smaller dimensional, or empty. This time we have to prove

µ(t(a, f))I(f) − µ(t(a ∩ H+, f ∩ H+))I(f ∩ H+) = 0.

The transverse cones t(a, f) and t(a ∩ H+, f) coincide, so we get

µ(t(a, f))
(

I(f) − I(f ∩ H+)
)

.

As f = f ∩ H+, this is equal to 0 as required.

a ∩ H+ a ∩ H−

a ∩ H

〈f〉 = Lf

Figure 9. Case I.3

• Case I.3: f is contained in H, thus it is a face of all four cones, in other words

f = f ∩ H+ = f ∩ H− = f ∩ H.

This time we have to prove

µ(t(a, f))I(f) − µ(t(a ∩ H+, f ∩ H+))I(f ∩ H+) −

− µ(t(a ∩ H−, f ∩ H−))I(f ∩ H−) + µ(t(a ∩ H, f))I(f ∩ H) = 0.
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In this case, the intersection of the transverse cones is

t(a ∩ H+, f) ∩ t(a ∩ H−, f) = t(a ∩ H, f),

the union of the transverse cones is

t(a, f) = t(a ∩ H+, f) ∪ t(a ∩ H−, f).

Thus we get
(

µ(t(a, f)) − µ(t(a ∩ H+, f)) − µ(t(a ∩ H−, f)) + µ(t(a ∩ H, f))
)

I(f).

From the induction hypothesis applied to the space V/lin(L), we deduce that this
is equal to 0.

a ∩ H+ a ∩ H−

f = a ∩ H

L = H

a ∩ H+ a ∩ H−

a ∩ H

〈f〉 = Lf

Figure 10. Case II

II) Next, we consider an affine subspace L such that L∩ a is not a face of a but,
say, f = L ∩ a ∩ H+ is a face of a ∩ H+. Then we must have L ⊂ H so that f is a
face of the three cones a∩H, a ∩H+ and a ∩H−, but not a face of a. We have to
show that

µ(t(a ∩ H+, f ∩ H+))I(f ∩ H+) + µ(t(a ∩ H−, f ∩ H−))I(f ∩ H−) −

− µ(t(a ∩ H, f ∩ H))I(f ∩ H) = 0,

with
f ∩ H+ = f ∩ H− = f ∩ H = f.

In this case, the union t(a ∩ H+, f) ∪ t(a ∩ H−, f) is the projection πlin(f)(a) of a

on V/lin(f); it is not pointed, therefore, applying again the induction hypothesis to
the space V/lin(L), we have

µ(t(a ∩ H+, f)) + µ(t(a ∩ H−, f)) − µ(t(a ∩ H, f)) = µ(πlin(f)(a)) = 0

and the result follows. �

Corollary 18. Let p be a polytope in V and s ∈ VQ. Then
∑

v∈V(p)

µ(s + dir(t(p, v)))

is equal to 1 if the point s is integral and 0 otherwise.
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Proof. This follows immediately from the valuation property and the relation (see
[4]) between the characteristic functions:

∑

v∈V(p)

χ(dir(t(p, v))) = χ({0}) mod L

where L denotes the space of linear combinations of characteristic functions of cones
with lines. �

Now we show that our functions are analytic near 0.

Proposition 19. Let a be an affine cone in V . The function µ(a) is analytic

near 0.

Proof. The result is true when V = 0 (and the explicit computation shows that
it is true also when dimV = 1). We will prove it by induction on the dimension
of V . Using the valuation property, it is enough to prove the analyticity when a is
a solid simplicial unimodular affine cone in V . Let v1, . . . , vk be primitive integral
generators of the edges of dir(a). If Φ is a meromorphic function on V ∗ such that
the product

(

k
∏

i=1

〈ξ, vi〉

)

Φ(ξ)

is analytic, we denote by Resv1
(Φ) the residue of Φ along v1 = 0, that is to say the

restriction to v⊥1 ⊂ V ∗ of

〈ξ, v1〉Φ(ξ).

From the properties of the functions S and I (Lemma 11) and the induction hy-
pothesis, it follows that the product

(

k
∏

i=1

〈ξ, vi〉

)

µ(a)(ξ)

is analytic. Thus we want to show that Resv1
(µ(a)) = 0. Starting from the defining

formula (9), we want to prove that, for ξ ∈ v⊥1 , we have

Resv1
(S(a))(ξ) =

∑

f; dim f>0

µ(t(a, f))(ξ) Resv1
(I(f))(ξ). (17)

Let us denote by π the projection V → V/〈v1〉. The cone π(a) is also a simpli-
cial unimodular cone with primitive integral generators π(v2), . . . , π(vd). If a is
unimodular, then the parallelepiped s + �(v1, . . . , vd) ⊂ V contains exactly one
integral point. Therefore, the explicit computations (6) and (8) of I(a) and S(a)
imply immediately that the residues along v1 = 0 of the functions S(a) and I(a)
are given by:

Resv1
(S(a)) = −S(π(a)),

Resv1
(I(a)) = −I(π(a)).

In the sum (17), only the faces f for which v1 is an edge of dir(f) contribute, and
these faces are in one to one correspondence with the faces of π(a). For such a face
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f, the transverse cone of π(a) along π(f) coincides with the transverse cone t(a, f)
and we have also

Resv1
(I(f)) = −I(π(f)),

whence (17), and the proposition. �

Next we will show that (9) still holds when a is replaced by any polyhedron p.
This will be an easy consequence of Brion’s theorem and the valuation property of
I and S. In the following three theorems, we collect the results of this section.

Theorem 20. Let V be a rational space and Q a rational scalar product on V ∗.

If W = V/L is a rational quotient space of V , we denote by C(W ) the set of affine

cones in W . For a ∈ C(W ), let I(a) and S(a) be the meromorphic functions with

rational coefficients on W ∗ defined in Propositions 5 and 7.
There exists a unique family of maps µW , indexed by the rational quotient spaces

W of V , such that the family enjoys the following properties:

(a) µW maps C(W ) to H(W ∗), the space of analytic functions on W ∗, with

rational Taylor coefficients.

(b) If W = {0}, then µW ({0}) = 1.
(c) If the affine cone a ∈ C(W ) contains a straight line, then µW (a) = 0.
(d) For any affine cone a in W , one has

S(a) =
∑

f∈F(a)

µW/lin(f)(t(a, f))I(f)

where the sum is over all faces of the cone a.

As in all this section, in equation (d) the function µW/lin(f)(t(a, f)) is consid-
ered as a function on W ∗ itself by means of the orthogonal projection W ∗ →
(W/lin(f))∗ = (lin(f))⊥ with respect to the scalar product on W ∗ ⊂ V ∗.

Theorem 21. The analytic functions defined in Theorem 20 have the following

properties :

(a) For any x ∈ Λ, one has µ(x + a) = µ(a).
(b) The map a 7→ µ(a) is equivariant with respect to lattice-preserving isome-

tries. In other words, let g be an isometry of W which preserves the lattice

Λ. Then µ(g(a))(tg−1ξ) = µ(a)(ξ).
(c) If W is an orthogonal sum W = W1 ⊕ W2 and ai is an affine cone in Wi

for i = 1, 2, then

µ(a1 + a2) = µ(a1)µ(a2).

(d) For a fixed s ∈ WQ, the map c → µ(s+ c) is a valuation on the set of cones

in W .

(e) Let p ⊂ W be a polyhedron, then

S(p)(ξ) =
∑

f∈F(p)

µ(t(p, f))(ξ)I(f)(ξ). (18)
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Proof. In Theorem 21, only point (e) has not yet been proven. If v is a vertex of
p, let us denote by F(p, v) the set of faces of p which contain v. For such a face
f ∈ F(p, v), the intersection d = 〈f〉 ∩ t(p, v) is a face of the cone t(p, v) and this
correspondence is a bijection between F(p, v) and F(t(p, v)) with inverse given
by f = d ∩ p. Moreover the transverse cone t(p, v) of p along its face 〈f〉 ∩ t(p, v)
coincides with the transverse cone t(p, f) of p along f. Therefore we have

S(t(p, v)) =
∑

f∈F(p,v)

µ(t(p, f)) I(〈f〉 ∩ t(p, v)).

Replacing S(t(p, v)) with the right-hand side of this equality in Brion’s formula,
we obtain

S(p) =
∑

v∈V(p)

∑

f∈F(p,v)

µ(t(p, f)) I(〈f〉 ∩ t(p, v)).

Then we reverse the order of summation and get

S(p) =
∑

f∈F(p)

µ(t(p, f))
∑

v∈V(f)

I(〈f〉 ∩ t(p, v)).

The last sum is equal to I(f). �

Theorem 22. Assume V = Rd with a fixed dimension d. Then, for m fixed, there

exists a polynomial time algorithm which computes µ(a) at order m for any affine

cone a ⊂ V .

Proof. By [2], there exist polynomial time algorithms which compute the functions
I(c) and S(c) at order m for any affine cone c in Rk, if k 6 d. Therefore by induction
we get an algorithm which computes µ(a) for any a ⊂ V . �

Let σ be a cone in the dual space V ∗. The dual cone σ∗ ⊂ V contains the
vector subspace 〈σ〉⊥. Let us denote by π〈σ〉⊥ the projection V → V/〈σ〉⊥. For

any s ∈ VQ, the projected cone π〈σ〉⊥(s + σ∗) is a pointed cone in V/〈σ〉⊥. Thus

µ(π〈σ〉⊥(s + σ∗)) is an analytic function on (V/〈σ〉⊥)∗ ∼= 〈σ〉 ⊂ V ∗. We consider
it as a function on V ∗ by means of orthogonal projection, as before. We obtain a
map µ∗

s : C(V ∗) → H(V ∗) defined by:

Definition 23. µ∗
s(σ) = µ(π〈σ〉⊥(s + σ∗)).

From the valuation behavior of µ, it follows that µ∗
s is a simple valuation. In

other words, the following corollary holds.

Corollary 24. Let σ be a cone in V ∗, and let {σ′} be a subdivision of σ. For any

s ∈ VQ, we have

µ∗
s(σ) =

∑

dim σ′=dim σ

µ∗
s(σ

′).

Proof. As {σ′} is a subdivision of σ, we have

χ(σ) =
∑

dim σ′=dim σ

χ(σ′) +
∑

dim σ′<dim σ

±χ(σ′).
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Let L = 〈σ〉⊥ ⊂ V and let π denote the projection V → V/L. The map τ 7→
χ(π(s+τ∗)) is a valuation on the set of cones in V ∗ (see [4] for instance). Therefore

χ(π(s + σ∗)) =
∑

dim σ′=dim σ

χ(π(s + σ′∗)) +
∑

dim σ′<dim σ

±χ(π(s + σ′∗)).

If dim σ′ < dim σ, then the cone π(s + σ′∗) ⊂ V/L contains a straight line, thus
µ(π(s + σ′∗)) = 0, and the corollary follows from the valuation property of µ. �

In a companion paper [6], we prove the following theorem, which extends to equi-
variant homology a result of Pommersheim–Thomas [19] by which they answered
a question of Danilov [14].

Theorem 25. Let E be a fan in V ∗ and let X be the corresponding toric variety.

For σ ∈ E, let X(σ) ⊆ X be the corresponding orbit closure. Then the equivariant

Todd class of X is equal to
∑

σ∈E

µ∗
0(σ)[X(σ)]

in the equivariant homology ring of X.

5. Local Euler–Maclaurin Formula

As in the previous section, V is a rational space and we fix a scalar product on
V . Let p be a (convex rational) polyhedron in V . To each face f of p, we are going
to associate a linear differential operator D(p, f) on V .

To any analytic function Φ(ξ) on V ∗, defined near 0, there corresponds a unique
linear differential operator D(Φ) (of infinite degree) with constant coefficients on V
such that Φ(ξ) is the symbol of D(Φ). More precisely, for ξ ∈ V ∗, let us denote by
eξ the function x 7→ e〈ξ,x〉 on V , then D(Φ) is defined by the relation

D(Φ) · eξ = Φ(ξ)eξ for ξ small enough.

Let W = V/L be a quotient space of V and let a be a pointed affine cone in W . In
the previous section, we constructed an analytic function µ(a) on W ∗ = L⊥ ⊂ V ∗.
By orthogonal projection, we consider µ(a) as a function on V ∗ and we introduce
the corresponding differential operator D(µ(a)) on V :

D(µ(a)) · eξ = µ(a)(ξ)eξ. (19)

Let p be a polyhedron in V .

Definition 26. Let f be a face of p. We denote by

D(p, f) = D(µ(t(p, f)))

the differential operator on V associated to the transverse cone t(p, f) of p along f.
We denote its constant term by ν(p, f). Thus

ν(p, f) = D(p, f) · 1 = µ(t(p, f))(0).
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k1 k2

a1 a2

Figure 11. Euler–Maclaurin for the interval [a1, a2]

The operator D(p, f), as well as its constant term ν(p, f), are local in the sense
that they depend only on the class of t(p, f) modulo integral translations. In partic-
ular, if p has integral vertices, then D(p, f) depends only on the cone of transverse
feasible directions at a generic point of f. The operator D(p, f) involves only deriva-
tives in directions orthogonal to the face f.

We are now ready to state the local Euler–Maclaurin formula for any polytope.

Theorem 27 (Local Euler–Maclaurin formula). Let p be a polytope in V . For any

polynomial function h(x) on V , we have

∑

x∈p∩Λ

h(x) =
∑

f∈F(p)

∫

f

D(p, f) · h (20)

where the integral on the face f is taken with respect to the Lebesgue measure on 〈f〉
defined by the lattice Λ ∩ lin(f).

Proof. The method is to check equality (20) for a polynomial of the form h(x) =
〈ξ, x〉k. Taking Taylor series, we may replace h(x) by et〈ξ,x〉 with t small. Then
the equality (20) becomes the formula in Theorem 21, (c)

S(p)(ξ) =
∑

f∈F(p)

µ(t(p, f))(ξ)If(ξ). �

In dimension 1, when p is an interval [a1, a2], applying (13) and (12) for µ(a1 +
R+) and µ(a2 − R+), we obtain

∑

a16x6a2,x∈Z

h(x) =

∫ a2

a1

h(t)dt −
∑

n>0

b((n + 1), t1)

(n + 1)!

((

d

dt

)n

h

)

(a1) −

−
∑

n>0

(−1)n b((n + 1), t2)

(n + 1)!

((

d

dt

)n

h

)

(a2),

where t1 and t2 in [0, 1) are defined by t1 = k1−a1, t2 = a2−k2, with k1 the smallest
integer greater or equal than a1 and k2 the largest integer smaller or equal than
a2 (Figure 11). Of course, when a1 and a2 are integers, we recover the historical
Euler–Maclaurin formula.

6. Ehrhart Polynomial

Let p be a rational polytope in a d-dimensional rational space V and let q be
an integer such that qp has integral vertices. Let h(x) be a polynomial function
of degree r on V . For any integer t, we consider the dilated polytope tp and the
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corresponding sum

S(tp, h) =
∑

x∈tp∩Λ

h(x).

As a function of t, it is given by a quasipolynomial: there exist functions t 7→
Ei(p, h, t) on Z which are periodic with period q such that

S(tp, h) =

d+r
∑

i=0

Ei(p, h, t)ti (21)

whenever t is a positive integer and even in a slightly larger range including negative
values.

Definition 28. The periodic functions Ei(p, h, t) defined by Equation (21) are
called the Ehrhart coefficients for the polytope p and the polynomial h.

When h is the constant polynomial h(x) = 1, we denote the Ehrhart coefficients
simply by Ei(p, t).

Our local Euler–Maclaurin formula expresses the coefficients Ei(p, h, t) in terms
of the functions µ((t(p, f)), as we will now explain.

Let a be a pointed affine cone with vertex s in V . If t is a non-zero integer, we
define µ(a, t) = µ(ta). For t = 0, we define µ(a, 0) = µ(dir(a)). Then µ(a, t + q) =
µ(a, t) for any integer q ∈ N such that the point qs is integral. Let p be a polyhedron
and f a face of codimension m. We define D(p, f, t) = D(µ(t(p, f), t)) for any integer
t ∈ N.

Remark 29. If the affine span 〈f〉 of the face f contains an integral point, then the
vertex of the transverse cone t(p, f) is integral, therefore µ(t(p, f), t) = µ(dir(t(p, f)))
and D(p, f, t) do not depend on t. We have D(p, f, t) = D(p, f).

Let w1, . . . , wm be an integral basis of the subspace lin(f)⊥Q ⊂ V . The operator
D(p, f, t) has the following expression:

D(p, f, t) = ν0(p, f, t) +

∞
∑

A,|A|=1

νA(p, f, t)∂A

where A = (a1, . . . , am), with ai ∈ N and ∂A = D(w1)
a1 · · ·D(wm)am . The

coefficients νA(p, f, t) ∈ Q are periodic with respect to t, with period equal to the
smallest integer qf such that qf〈f〉 contains an integral point.

Proposition 30. Let p be a rational polytope and h a polynomial function of degree

r on V . Then, for any integer t > 0, we have

S(tp, h) =
∑

f∈F(p)

∫

tf

D(p, f, t) · h. (22)

Furthermore we have
∫

tf

D(p, f, t) · h =

dim f+r
∑

i=dim f

Ei(p, h, f, t) ti

where the coefficients Ei(p, h, f, t) are periodic with period qf.
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Hence the Ehrhart coefficients are given by

Ei(p, h, t) =
∑

f, dim f6i

Ei(p, h, f, t).

Proof. For t > 0, (22) is just the Euler–Maclaurin formula of Theorem 27 and the
second equation follows from obvious estimates on the polynomial behaviour of the
integrals.

For t = 0, as both sides of (22) are quasipolynomials, they take the same value.
We may also deduce the equality for t = 0 from Corollary 18. Indeed, for t = 0,
the left hand side is h(0) and the faces of dimension > 0 give a zero contribution
to the right hand side. The equality becomes

h(0) =
∑

v∈V(p)

(D(dir(t(p, v))) · h)(0),

and follows immediately from Corollary 18. �

For instance, let h be a monomial h(x) = xm with m ∈ Nd. The coefficient of
the highest degree term td+|m| is the integral

∫

p
xmdx. As the operator D(p, p, t)

is equal to 1, the face p does not contribute to the coefficients of lower degree. The
coefficient of td+|m|−1 involves only the faces of codimension 1, the coefficient of
td+|m|−2 involves only the faces of codimension 1 and 2, etc.

When we apply the last proposition to the function h(x) = 1, we obtain a formula
for the number of integral points in tp.

Corollary 31. (a) The Ehrhart quasipolynomial of the polytope p is given by

Card(tp ∩ Λ) =
∑

f∈F(p)

ν0(p, f, t) vol(f)tdim f,

hence

Ek(p, t) =
∑

f,dim f=k

ν0(p, f, t) vol(f).

(b) The rational number ν0(p, f, t) depends only on the class modulo lattice trans-

lations of the transverse cone tt(p, f). Therefore, it is a periodic function of t with

period at most equal to qf, the smallest integer such that qf〈f〉 contains integral

points. In particular, if the affine span 〈f〉 contains integral points for every k-

dimensional face f of p, then the Ehrhart coefficient Ek(p, t) does not depend on t.
(c) When dimV is fixed, there exists a polynomial time algorithm which computes

ν0(p, f, t).

Proof. The last statement in (b) is due to Stanley [22]; it also follows immediately
from Remark 29. The computability follows from the computability of the functions
µ(a). �

Barvinok [3] proved recently that, given an integer m, there exists a polyno-
mial time algorithm which computes the m highest coefficients of the Ehrhart
quasipolynomial of any rational simplex in Rd, when the dimension d is consid-

ered as an input. We hope that our construction of the functions µ leads to another
polynomial time algorithm which would compute the m highest coefficients of the
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Ehrhart quasipolynomial for any simplex in Rd and any polynomial h(x), when the
dimension d and the degree of the polynomial are considered as input.

7. Computations in Dimension 2

In this section, V = R2 with Λ = Z2. Let v1 and v2 be primitive integral vectors.
Let s ∈ VQ. We are going to compute µ(a) for the affine cone

a = s + R+v1 + R+v2.

We will use the following notations:
For t ∈ R, we denote the smallest integer greater or equal than t by ceil(t) and

we define [[t]] ∈ [0, 1) by [[t]] = ceil(t) − t.

We denote by B the function B(y, t) = e[[t]]y

1−ey + 1
y . Recall that the function µ(a)

for a one-dimensional cone (half-line) a is expressed in terms of B.
s = s1v1 + s2v2 with si ∈ Q.

Ci = Q(v1,v2)
Q(vi,vi)

, for i = 1, 2.

q = det(v1, v2). We assume q > 0.
w ∈ Z2 is a vector such that det(v1, w) = 1,
p = det(v2, w). Thus p and q are coprime integers.
r = (qs1 + [[qs1]]) + p(qs2 + [[qs2]]).
ζ is a primitive q-th root of 1.
We observe that the lattice in V/Rv1 is generated by w̄ = 1

q v̄2 where w̄, v̄2

denotes the image of w, v2 in V/Rv1. Thus the transverse cone t(a, f1) ⊂ V/Rv1 is
given by

t(a, f1) = (qs2 + R+)
1

q
v̄2.

Proposition 32. For ξ ∈ V ∗, let yi = 〈ξ, vi〉, for i = 1, 2. Then the function

µ(a)(ξ) is given by

µ(a)(ξ) =

=
1

q
e[[qs1]]

y1
q e[[qs2]]

y2
q

(

1

(1 − e
y1
q )(1 − e

y2
q )

+

q−1
∑

k=1

ζkr

(1 − ζke
y1
q )(1 − ζkpe

y2
q )

)

+

+
1

y1
B

(

y2 − C1y1

q
, [[qs2]]

)

+
1

y2
B

(

y1 − C2y2

q
, [[qs1]]

)

−
q

y1y2
. (23)

Its value at ξ = 0 is equal to

µ(a)(0) =
1

q

((

1

2
− [[qs1]]

)(

1

2
− [[qs2]]

))

+

+
Q(v1, v2)

Q(v1, v1)

(

1

12
−

1

2
[[qs2]] +

1

2
[[qs2]]

2

)

+
Q(v1, v2)

Q(v2, v2)

(

1

12
−

1

2
[[qs1]] +

1

2
[[qs1]]

2

)

+

+
1

q

q−1
∑

k=1

ζkr

(1 − ζk)(1 − ζkp)
. (24)
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When a is unimodular, µ(a)(ξ) is given by

µ(a)(ξ) =
exp([[s1]]y1 + [[s2]]y2)

(1 − ey1)(1 − ey2)
+

+
1

y1
B(y2 − C1y1, [[s2]]) +

1

y2
B(y1 − C2y2, [[s1]]) −

1

y1y2
(25)

and its constant term µ(a)(0) is given by

µ(a)(0) =

(

1

2
− [[s1]]

)(

1

2
− [[s2]]

)

+

+
Q(v1, v2)

Q(v1, v1)

(

1

12
−

1

2
[[s2]]+

1

2
[[s2]]

2

)

+
Q(v1, v2)

Q(v2, v2)

(

1

12
−

1

2
[[s1]]+

1

2
[[s1]]

2

)

. (26)

Remark 33. In actual Maple computations, we use only the unimodular case (25)
which is computable in polynomial time at any given order. Thanks to the valuation
property, for a non-unimodular cone a, we compute µ(a) by performing first a signed
decomposition of a into unimodular cones, similar to Barvinok’s decomposition.
As a result, by our local Euler–Maclaurin formula, we have fast algorithms which
compute, for a polygon p ⊂ R2 and a monomial h(x) = xm1

1 xm2
2 , the sum of values

at integral points S(p, h) =
∑

x∈p∩Λ h(x) and the coefficients of the corresponding
Ehrhart quasipolynomial.

Proof. We use the defining relation of Proposition 12. First, we obtain a summation
formula for S(a) by using finite Fourier transform as in [9]. We observe that Λ ⊂
M = 1

q (Zv1 + Zv2). Let ã ⊂ a be the cone

ã = s̃ + R+v1 + R+v2

with vertex

s̃ =
1

q
(ceil(qs1)v1 + ceil(qs2)v2).

Then ã ∩ M = a ∩ M . As Λ ⊂ M , we have also ã ∩ Λ = a ∩ Λ. Consider the dual
lattice M∗ ⊂ Λ∗. Let x ∈ M . We have

∑

γ∈Λ∗/M∗

e2iπ〈γ,x〉 =

{

0 if x /∈ Z2,

q if x ∈ Z2.

Therefore we have

S(ã)(ξ) =
1

q

∑

γ∈Λ∗/M∗

∑

x∈ã∩M

e〈2iπγ+ξ,x〉.

Since

ã ∩ M = s̃ + Z+
v1

q
+ Z+

v2

q
,

we obtain

S(a)(ξ) = S(ã)(ξ) = e〈ξ,s̃〉 1

q

q−1
∑

k=0

e〈2iπkδ,s̃〉

(1 − e〈2iπkδ+ξ,
v1
q
〉)(1 − e〈2iπkδ+ξ,

v2
q
〉)

. (27)
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In this formula, δ is a generator of the group Λ∗/M∗ ∼= Z/qZ. By using the basis
(v1, w) of Z2, we obtain:

〈δ, v1〉 = 1, 〈δ, v2〉 = p.

Let (v∗1 , v∗2) be the dual basis of (v1, v2). The orthogonal projection of ξ on
(V/Rv1)

∗ = Rv∗2 is equal to (−C1y1 + y2)v
∗
2 , with

C1 = −
Q(v∗1 , v∗2)

Q(v∗2 , v∗2)
=

Q(v1, v2)

Q(v1, v1)
.

Then the computation in dimension one (11) gives

µ(t(a, f1))(ξ) = B

(

−C1y1 + y2

q
, [[qs2]]

)

and similarly

µ(t(a, f2))(ξ) = B

(

y1 − C2y2

q
, [[qs1]]

)

with

C2 =
Q(v1, v2)

Q(v2, v2)
.

We have

I(fi)(ξ) = ey1s1+y2s2

(

−1

yi

)

,

I(a)(ξ) = ey1s1+y2s2
q

y1y2
.

Therefore, by (12), we have

µ(a)(ξ) = e−(y1s1+y2s2)S(a)(ξ) +

+
1

y1
B

(

−C1y1 + y2

q
, [[qs2]]

)

+
1

y2
B

(

y1 − C2y2

q
, [[qs1]]

)

−
q

y1y2
. (28)

In (28), we replace S(a) with the right hand side of (27), taking in account the
equality ceil(qsi) − qsi = [[qsi]]. This gives (23). �

If a is not unimodular, then µ(a)(ξ) involves the “extended” Fourier–Dedekind
sum

1

q

q−1
∑

k=1

ζkr

(1 − ζke
y1
q )(1 − ζkpe

y2
q )

,

and µ(a)(0) involves the Fourier–Dedekind sum

D(q, 1, p, r) =
1

q

q−1
∑

k=1

ζkr

(1 − ζk)(1 − ζkp)
.

One has (see for instance [5])

D(q, 1, p, r) =

q−1
∑

k=0

((

−
kp + r

q

))((

k

q

))

−
1

4q
,
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where the “sawtooth” function ((a)) is defined by

((a)) = a − [a] −
1

2
.

The Dedekind sum D(q, 1, p, r) can also be computed in polynomial time by means
of reciprocity relations (see for example [5]), but here we do not use this fact.

0 −28224572717107/66853011456

5131761430387/12155092992

−1/252

287696501/133706022912
0

1/10626

Figure 12. Le savant Cosinus

Example 34 (Figure 12). We compute the right hand side of Euler–Maclaurin
formula in the case of the “dull triangle” with vertices (0, 0), (1, 0), (0, 1), and the
polynomial h(x) = x20

1 x2. As expected, the contributions of the various faces of p

add up to 0 1.

Contribution of vertices: 0, −28224572717107
66853011456 , 5131761430387

12155092992 .

Contribution of edges: − 1
252 , 287696501

133706022912 , 0.

Integral over triangle: 1
10626 .

Example 35. Triangle with vertices s1 = ( 1
3 , 1

5 ), s2 = ( 16
3 , 1

7 ), s3 = ( 37
5 , 92

7 ).

Number of integral points: 31

Contribution of vertices: 89133678169939
66088208614500 , −4281800310619

2106396270216 , −401172431621091
457987274773000

Contribution of edges: 1
210 , − 1

210 , 1
1050

Area of triangle: 34187
1050

Example 36. Quadrangle with vertices ( 1
3 , 1

5 ), ( 16
3 , 1

7 ), ( 37
5 , 92

7 ), (3, 10).

Number of integral points: 49

Contribution of vertices: 210849514883
127956322980 , −4281800310619

2106396270216 , −179008247
706816180 , −4382929

6869864

Contribution of edges: 1
210 , − 1

210 , 11
35 , 1

30

Area: 699
14

Remark that, as expected, the contributions of the bottom right vertex ( 16
3 , 1

7 )
in the triangle or the trapezoid of Figure 13 are the same, as this vertex have the
same tangent cone in both polygons.

1This computation delighted us, and it would have delighted Dr. Pancrace Eusèbe Zéphyrin
Brioché alias “Dr. Cosinus” [13].
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89133678169939/66088208614500 −4281800310619/2106396270216

−401172431621091/457987274773000

1/210

−1/2101/1050

34187/1050

210849514883/127956322980 −4281800310619/2106396270216

−179008247/706816180

−4382929/6869864

1/210

−1/210

11/35

1/30 699/14

Figure 13. Triangle with vertices ( 1
3 , 1

5 ), ( 16
3 , 1

7 ), ( 37
5 , 92

7 ) and
quadrangle with extra vertex (3, 10)

Example 37. We compute the Ehrhart quasipolynomial E2t
2 + E1(t)t+ E0(t) for

the number of integral points of the triangle of Example 35. The highest coefficient
is the area of the triangle, E2 = 34187

1050 . The coefficient E1(t) is the sum of the
contributions of the edges. The coefficient E0(t) is the sum of the contributions of
the vertices.

On this example, we can observe the periods of the contributions of the edges
and vertices to the Ehrhart coefficients (Corollary 31). The period of a vertex
contribution is equal to the lcm of the denominators of its coordinates. For an
edge starting from a vertex (a1, a2) and parallel to the primitive vector (v1, v2),
the period is the least integer q such that q(a1v2 − a2v1) is an integer.

Contribution of edges (periods 3, 5, 7 respectively):

− 1
105 mod (t, 3) + 1

70 , − 1
105 mod (4 t, 7) + 1/30, − 1

525 mod (2 t, 5) + 1
210 .
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Contribution of vertex s1 = ( 1
3 , 1

5 ) (period 15):

1
75 mod (t, 5)mod (t, 15) − 1

45 mod (t, 3)mod (t, 15) − 1
15 mod (t, 5)mod (2 t, 3)

+1765457034769
293725371620 − 44

5 mod (t, 5) − 747989
11987225 mod (2 t, 5) + 1

30 mod (7 t, 15)

+3
5 mod (8 t, 15) − 1

15 mod (t, 15) + 44
25 (mod (t, 5))

2

− 2
45 (mod (8 t, 15))

2
+ 1

225 (mod (t, 15))
2

+ 1
3 mod (2 t, 3)

+ 15227
183774 mod (t, 3) − 1

9 (mod (2 t, 3))
2

+ 2567
91887 (mod (t, 3))

2

− 901467
119872250 (mod (2 t, 5))

2
− 1

150 (mod (7 t, 15))
2

+ 1
75 mod (2 t, 5)mod (7 t, 15)

+ 1
45 mod (8 t, 15)mod (2 t, 3)

Contribution of vertex s2 = ( 16
3 , 1

7 ) (period 21):

−32132693735
4776408776 − 13

14 (mod (t, 7))
2

+ 13
2 mod (t, 7) + 1

63 mod (t, 3) mod (2 t, 21)

− 15227
183774 mod (t, 3) − 1

21 mod (2 t, 21) − 2567
91887 (mod (t, 3))

2
+ 1

9 (mod (2 t, 3))
2

−2
3 mod (2 t, 3) + 1

63 mod (2 t, 21)mod (2 t, 3)

+ 1
21 mod (2 t, 3)mod (4 t, 7) − 30189

545804 mod (4 t, 7)

− 8797
3820628 (mod (4 t, 7))2

Contribution of vertex s3 = ( 37
5 , 92

7 ) (period 35):

9
1225 (mod(16 t, 35))2 + 3

1225 (mod(23 t, 35))2 + 641856910509
373867163080

+ 30189
545804 mod(4 t, 7) + 1

1225 (mod(34 t, 35))2

+ 1
10 mod(3 t, 5) − 1

35 mod(34 t, 35) − 1
2450 (mod(18 t, 35))2

+ 2
1225 (mod(9 t, 35))2 + 901467

119872250 (mod(2 t, 5))2

+ 1
70 mod(18 t, 35) + 1

50 (mod(3 t, 5))2 + 1
1225 mod(34 t, 35) mod(18 t, 35)

+ 1
1225 mod(23 t, 35) mod(16 t, 35)

+ 1
175 mod(3 t, 5) mod(23 t, 35) − 1

1225 mod(34 t, 35) mod(16 t, 35)

− 1
175 mod(2 t, 5) mod(16 t, 35)

− 1
35 mod(3 t, 7) mod(3 t, 5)

− 1
35 mod(3 t, 5) mod(4 t, 7) − 1

245 mod(9 t, 35) mod(3 t, 7)

− 1
175 mod(3 t, 5) mod(9 t, 35)

− 1
1225 mod(16 t, 35) mod(18 t, 35) + 747989

11987225 mod(2 t, 5)

+ 8797
3820628 (mod(4 t, 7))

2
− 1

35 mod(9 t, 35) − 4
35 mod(23 t, 35)

− 8
35 mod(16 t, 35) + 1

49 (mod(3 t, 7))
2

Example 38 (Computation time). We computed the full Ehrhart quasipolynomial

corresponding to the triangle of Example 35 and the polynomial h(x1, x2) = xk1
1 xk2

2 ,
with increasing exponents k1 and k2. Allowing a computation time of about one
hour, we reached k1 = k2 = 24. The result is of course too big to write here.
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The sum of values x48
1 x48

2 at the integral points of the triangle of Example 35
dilated by the factor N = 115 took about the same time. The result is the following
number

55969247458735493271268368615238071121335974262337882261418363621
89704055956429496253759473056373507451253522021344188115187647607
84555431172202923756940824265247663088847763429436570335188702325
06644969965841257822711805056447218921550669146263582661876630783
21357671611262065293901983868557252464459832189159990869820527095
53646871654914800005753059422066576204781923454823934475242960034
42199041253798398004263030681714027295470241663946228744550160085
43856624239377702107746492579014275563017167813144052693763385569
75239252588060279466314599314734680953729093269435217987689840619
0740089242444014302.

As experiments showed, our method for the computation of
∑

x∈p∩Zd h(x) is
very efficient for this small dimension, compared to other available softwares. Fur-
thermore, as Example 37 shows, the Ehrhart polynomial is written as a sum of
canonical contributions of all faces, once the scalar product is fixed. We will come
back soon to the computational and complexity aspects of this problem for higher
dimensions.
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(1988), no. 4, 653–663. MR 982338
[8] M. Brion, Points entiers dans les polytopes convexes, Séminaire Bourbaki, Vol. 1993/94, Exp.
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